自动驾驶车辆管理的车道检测:PHT方法

M. N. Rahaman, M. S. Biswas, S. Chaki, M. M. Hossain, Shamim Ahmed, M. Biswas
{"title":"自动驾驶车辆管理的车道检测:PHT方法","authors":"M. N. Rahaman, M. S. Biswas, S. Chaki, M. M. Hossain, Shamim Ahmed, M. Biswas","doi":"10.1109/ICCIT54785.2021.9689883","DOIUrl":null,"url":null,"abstract":"Road region extraction is a crucial part of the vision-based driver assistance system of intelligent vehicles. This driver assistance system reduces road accidents, enhances safety, and improves traffic conditions. Autonomous Guided Vehicles are capable of performing required tasks in a defined environment without continuous human guidance. This research paper presents the design of a prototype autonomous guided vehicle which will detect and follow the lanes using the Probabilistic Hough Transform (PHT) algorithm. To do so, We convert our RGB road images into an HSV color model and then apply Gaussian smoothing to the converted grayscale image. For detection purposes, we process our region of interest (ROI) using a polygon clipping algorithm. Then, we apply Probabilistic Hough Transform upon the ROI image while setting all the parameters in our proposed lane detection algorithm. We present a robust real-time approach to extract road regions even in critical conditions like urban roads, unmarked roads. We have applied our proposed framework on the CALTECH dataset and gained 94.7% detection accuracy results in our experimental setup.","PeriodicalId":166450,"journal":{"name":"2021 24th International Conference on Computer and Information Technology (ICCIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lane Detection for Autonomous Vehicle Management: PHT Approach\",\"authors\":\"M. N. Rahaman, M. S. Biswas, S. Chaki, M. M. Hossain, Shamim Ahmed, M. Biswas\",\"doi\":\"10.1109/ICCIT54785.2021.9689883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Road region extraction is a crucial part of the vision-based driver assistance system of intelligent vehicles. This driver assistance system reduces road accidents, enhances safety, and improves traffic conditions. Autonomous Guided Vehicles are capable of performing required tasks in a defined environment without continuous human guidance. This research paper presents the design of a prototype autonomous guided vehicle which will detect and follow the lanes using the Probabilistic Hough Transform (PHT) algorithm. To do so, We convert our RGB road images into an HSV color model and then apply Gaussian smoothing to the converted grayscale image. For detection purposes, we process our region of interest (ROI) using a polygon clipping algorithm. Then, we apply Probabilistic Hough Transform upon the ROI image while setting all the parameters in our proposed lane detection algorithm. We present a robust real-time approach to extract road regions even in critical conditions like urban roads, unmarked roads. We have applied our proposed framework on the CALTECH dataset and gained 94.7% detection accuracy results in our experimental setup.\",\"PeriodicalId\":166450,\"journal\":{\"name\":\"2021 24th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 24th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT54785.2021.9689883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT54785.2021.9689883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

道路区域提取是基于视觉的智能汽车驾驶辅助系统的重要组成部分。这个驾驶员辅助系统减少了道路事故,提高了安全性,改善了交通状况。自动制导车辆能够在没有人类持续引导的情况下在指定的环境中执行所需的任务。本文提出了一种基于概率霍夫变换(PHT)算法的自动驾驶车辆的原型设计。为此,我们将RGB道路图像转换为HSV颜色模型,然后对转换后的灰度图像应用高斯平滑。为了检测目的,我们使用多边形裁剪算法处理感兴趣区域(ROI)。然后,我们对感兴趣区域图像进行概率霍夫变换,同时设置我们提出的车道检测算法的所有参数。我们提出了一种强大的实时方法来提取道路区域,即使在城市道路,无标记道路等关键条件下。我们在CALTECH数据集上应用了我们提出的框架,在我们的实验设置中获得了94.7%的检测精度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lane Detection for Autonomous Vehicle Management: PHT Approach
Road region extraction is a crucial part of the vision-based driver assistance system of intelligent vehicles. This driver assistance system reduces road accidents, enhances safety, and improves traffic conditions. Autonomous Guided Vehicles are capable of performing required tasks in a defined environment without continuous human guidance. This research paper presents the design of a prototype autonomous guided vehicle which will detect and follow the lanes using the Probabilistic Hough Transform (PHT) algorithm. To do so, We convert our RGB road images into an HSV color model and then apply Gaussian smoothing to the converted grayscale image. For detection purposes, we process our region of interest (ROI) using a polygon clipping algorithm. Then, we apply Probabilistic Hough Transform upon the ROI image while setting all the parameters in our proposed lane detection algorithm. We present a robust real-time approach to extract road regions even in critical conditions like urban roads, unmarked roads. We have applied our proposed framework on the CALTECH dataset and gained 94.7% detection accuracy results in our experimental setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信