动态随机对策中的正则马尔可夫完美均衡理论:通用性、稳定性和纯化性

U. Doraszelski, Juan F. Escobar
{"title":"动态随机对策中的正则马尔可夫完美均衡理论:通用性、稳定性和纯化性","authors":"U. Doraszelski, Juan F. Escobar","doi":"10.2139/ssrn.1120819","DOIUrl":null,"url":null,"abstract":"This paper studies generic properties of Markov perfect equilibria in dynamic stochastic games. We show that almost all dynamic stochastic games have a finite number of locally isolated Markov perfect equilibria. These equilibria are essential and strongly stable. Moreover, they all admit purification. To establish these results, we introduce a notion of regularity for dynamic stochastic games and exploit a simple connection between normal form and dynamic stochastic games.","PeriodicalId":401540,"journal":{"name":"CEPR: Industrial Organization (Topic)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"A Theory of Regular Markov Perfect Equilibria in Dynamic Stochastic Games: Genericity, Stability, and Purification\",\"authors\":\"U. Doraszelski, Juan F. Escobar\",\"doi\":\"10.2139/ssrn.1120819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies generic properties of Markov perfect equilibria in dynamic stochastic games. We show that almost all dynamic stochastic games have a finite number of locally isolated Markov perfect equilibria. These equilibria are essential and strongly stable. Moreover, they all admit purification. To establish these results, we introduce a notion of regularity for dynamic stochastic games and exploit a simple connection between normal form and dynamic stochastic games.\",\"PeriodicalId\":401540,\"journal\":{\"name\":\"CEPR: Industrial Organization (Topic)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEPR: Industrial Organization (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1120819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEPR: Industrial Organization (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1120819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

研究了动态随机对策中马尔可夫完美均衡的一般性质。我们证明了几乎所有的动态随机对策都有有限个局部孤立的马尔可夫完美均衡。这些平衡是基本的和强稳定的。此外,他们都承认净化。为了证明这些结果,我们引入了动态随机对策的规则性概念,并利用了范式与动态随机对策之间的简单联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Theory of Regular Markov Perfect Equilibria in Dynamic Stochastic Games: Genericity, Stability, and Purification
This paper studies generic properties of Markov perfect equilibria in dynamic stochastic games. We show that almost all dynamic stochastic games have a finite number of locally isolated Markov perfect equilibria. These equilibria are essential and strongly stable. Moreover, they all admit purification. To establish these results, we introduce a notion of regularity for dynamic stochastic games and exploit a simple connection between normal form and dynamic stochastic games.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信