{"title":"众包关联数据问题回答与水产养殖","authors":"Nick Collis, Ingo Frommholz","doi":"10.1109/JCDL52503.2021.00043","DOIUrl":null,"url":null,"abstract":"There is a need for Question Answering (QA) to return accurate answers to complex natural language questions over Linked Data, improving the accessibility of Linked Data (LD) search by abstracting the complexity of SPARQL whilst retaining its expressiveness. This work presents AQUACOLD, a LD QA system which harnesses the power of crowdsourcing to meet this need.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crowdsourced Linked Data Question Answering with AQUACOLD\",\"authors\":\"Nick Collis, Ingo Frommholz\",\"doi\":\"10.1109/JCDL52503.2021.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a need for Question Answering (QA) to return accurate answers to complex natural language questions over Linked Data, improving the accessibility of Linked Data (LD) search by abstracting the complexity of SPARQL whilst retaining its expressiveness. This work presents AQUACOLD, a LD QA system which harnesses the power of crowdsourcing to meet this need.\",\"PeriodicalId\":112400,\"journal\":{\"name\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCDL52503.2021.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crowdsourced Linked Data Question Answering with AQUACOLD
There is a need for Question Answering (QA) to return accurate answers to complex natural language questions over Linked Data, improving the accessibility of Linked Data (LD) search by abstracting the complexity of SPARQL whilst retaining its expressiveness. This work presents AQUACOLD, a LD QA system which harnesses the power of crowdsourcing to meet this need.