数值不变二次套期保值与均值方差组合配置

A. Černý, Christoph Czichowsky, J. Kallsen
{"title":"数值不变二次套期保值与均值方差组合配置","authors":"A. Černý, Christoph Czichowsky, J. Kallsen","doi":"10.2139/ssrn.3944947","DOIUrl":null,"url":null,"abstract":"The paper investigates quadratic hedging in a semimartingale market that does not necessarily contain a risk-free asset. An equivalence result for hedging with and without numeraire change is established. This permits direct computation of the optimal strategy without choosing a reference asset and/or performing a numeraire change. New explicit expressions for optimal strategies are obtained, featuring the use of oblique projections that provide unified treatment of the case with and without a risk-free asset. The analysis yields a streamlined computation of the efficient frontier for the pure investment problem in terms of three easily interpreted processes. The main result advances our understanding of the efficient frontier formation in the most general case in which a risk-free asset may not be present. Several illustrations of the numeraire-invariant approach are given.","PeriodicalId":377322,"journal":{"name":"Investments eJournal","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numeraire-Invariant Quadratic Hedging and Mean-Variance Portfolio Allocation\",\"authors\":\"A. Černý, Christoph Czichowsky, J. Kallsen\",\"doi\":\"10.2139/ssrn.3944947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates quadratic hedging in a semimartingale market that does not necessarily contain a risk-free asset. An equivalence result for hedging with and without numeraire change is established. This permits direct computation of the optimal strategy without choosing a reference asset and/or performing a numeraire change. New explicit expressions for optimal strategies are obtained, featuring the use of oblique projections that provide unified treatment of the case with and without a risk-free asset. The analysis yields a streamlined computation of the efficient frontier for the pure investment problem in terms of three easily interpreted processes. The main result advances our understanding of the efficient frontier formation in the most general case in which a risk-free asset may not be present. Several illustrations of the numeraire-invariant approach are given.\",\"PeriodicalId\":377322,\"journal\":{\"name\":\"Investments eJournal\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investments eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3944947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investments eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3944947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了不包含无风险资产的半鞅市场中的二次套期保值问题。建立了数值变化和不变化时套期保值的等价结果。这允许直接计算最优策略,而无需选择参考资产和/或执行数值更改。获得了新的最优策略的显式表达式,其特点是使用倾斜投影,提供了有和没有无风险资产的情况下的统一处理。该分析为纯投资问题的有效边界提供了一种简化的计算方法,可以用三个易于解释的过程来表示。主要结果促进了我们对无风险资产可能不存在的最一般情况下有效边界形成的理解。给出了数值不变方法的几个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numeraire-Invariant Quadratic Hedging and Mean-Variance Portfolio Allocation
The paper investigates quadratic hedging in a semimartingale market that does not necessarily contain a risk-free asset. An equivalence result for hedging with and without numeraire change is established. This permits direct computation of the optimal strategy without choosing a reference asset and/or performing a numeraire change. New explicit expressions for optimal strategies are obtained, featuring the use of oblique projections that provide unified treatment of the case with and without a risk-free asset. The analysis yields a streamlined computation of the efficient frontier for the pure investment problem in terms of three easily interpreted processes. The main result advances our understanding of the efficient frontier formation in the most general case in which a risk-free asset may not be present. Several illustrations of the numeraire-invariant approach are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信