{"title":"同步数据流图的Max-Plus代数吞吐量分析","authors":"R. D. Groote, J. Kuper, H. Broersma, G. Smit","doi":"10.1109/SEAA.2012.20","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel approach to throughput analysis of synchronous dataflow (SDF) graphs. Our approach is based on describing the evolution of actor firing times as a linear time-invariant system in max-plus algebra. Experimental results indicate that our approach is faster than state-of-the-art approaches to throughput analysis of SDF graphs. The efficiency of our approach is due to an exploitation of the regular structure of the max-plus system's graphical representation, the properties of which we thoroughly prove.","PeriodicalId":298734,"journal":{"name":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Max-Plus Algebraic Throughput Analysis of Synchronous Dataflow Graphs\",\"authors\":\"R. D. Groote, J. Kuper, H. Broersma, G. Smit\",\"doi\":\"10.1109/SEAA.2012.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel approach to throughput analysis of synchronous dataflow (SDF) graphs. Our approach is based on describing the evolution of actor firing times as a linear time-invariant system in max-plus algebra. Experimental results indicate that our approach is faster than state-of-the-art approaches to throughput analysis of SDF graphs. The efficiency of our approach is due to an exploitation of the regular structure of the max-plus system's graphical representation, the properties of which we thoroughly prove.\",\"PeriodicalId\":298734,\"journal\":{\"name\":\"2012 38th Euromicro Conference on Software Engineering and Advanced Applications\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th Euromicro Conference on Software Engineering and Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA.2012.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th Euromicro Conference on Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2012.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Max-Plus Algebraic Throughput Analysis of Synchronous Dataflow Graphs
In this paper we present a novel approach to throughput analysis of synchronous dataflow (SDF) graphs. Our approach is based on describing the evolution of actor firing times as a linear time-invariant system in max-plus algebra. Experimental results indicate that our approach is faster than state-of-the-art approaches to throughput analysis of SDF graphs. The efficiency of our approach is due to an exploitation of the regular structure of the max-plus system's graphical representation, the properties of which we thoroughly prove.