结合多模态特征与层次分类器融合的野外情绪识别

Bo Sun, Liandong Li, Tian Zuo, Ying Chen, Guoyan Zhou, Xuewen Wu
{"title":"结合多模态特征与层次分类器融合的野外情绪识别","authors":"Bo Sun, Liandong Li, Tian Zuo, Ying Chen, Guoyan Zhou, Xuewen Wu","doi":"10.1145/2663204.2666272","DOIUrl":null,"url":null,"abstract":"Emotion recognition in the wild is a very challenging task. In this paper, we investigate a variety of different multimodal features from video and audio to evaluate their discriminative ability to human emotion analysis. For each clip, we extract SIFT, LBP-TOP, PHOG, LPQ-TOP and audio features. We train different classifiers for every kind of features on the dataset from EmotiW 2014 Challenge, and we propose a novel hierarchical classifier fusion method for all the extracted features. The final achievement we gained on the test set is 47.17% which is much better than the best baseline recognition rate of 33.7%.","PeriodicalId":389037,"journal":{"name":"Proceedings of the 16th International Conference on Multimodal Interaction","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Combining Multimodal Features with Hierarchical Classifier Fusion for Emotion Recognition in the Wild\",\"authors\":\"Bo Sun, Liandong Li, Tian Zuo, Ying Chen, Guoyan Zhou, Xuewen Wu\",\"doi\":\"10.1145/2663204.2666272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion recognition in the wild is a very challenging task. In this paper, we investigate a variety of different multimodal features from video and audio to evaluate their discriminative ability to human emotion analysis. For each clip, we extract SIFT, LBP-TOP, PHOG, LPQ-TOP and audio features. We train different classifiers for every kind of features on the dataset from EmotiW 2014 Challenge, and we propose a novel hierarchical classifier fusion method for all the extracted features. The final achievement we gained on the test set is 47.17% which is much better than the best baseline recognition rate of 33.7%.\",\"PeriodicalId\":389037,\"journal\":{\"name\":\"Proceedings of the 16th International Conference on Multimodal Interaction\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663204.2666272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663204.2666272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

在野外进行情绪识别是一项非常具有挑战性的任务。在本文中,我们研究了视频和音频的各种不同的多模态特征,以评估它们对人类情感分析的判别能力。对于每个片段,我们提取SIFT, LBP-TOP, PHOG, LPQ-TOP和音频特征。我们对EmotiW 2014 Challenge数据集的每一种特征训练不同的分类器,并对提取的所有特征提出了一种新的分层分类器融合方法。我们在测试集上获得的最终成绩为47.17%,大大优于最佳基线识别率33.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Multimodal Features with Hierarchical Classifier Fusion for Emotion Recognition in the Wild
Emotion recognition in the wild is a very challenging task. In this paper, we investigate a variety of different multimodal features from video and audio to evaluate their discriminative ability to human emotion analysis. For each clip, we extract SIFT, LBP-TOP, PHOG, LPQ-TOP and audio features. We train different classifiers for every kind of features on the dataset from EmotiW 2014 Challenge, and we propose a novel hierarchical classifier fusion method for all the extracted features. The final achievement we gained on the test set is 47.17% which is much better than the best baseline recognition rate of 33.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信