贝叶斯信号分类器

C. Chow, S. Y. Yuen
{"title":"贝叶斯信号分类器","authors":"C. Chow, S. Y. Yuen","doi":"10.1109/IJCNN.2007.4370956","DOIUrl":null,"url":null,"abstract":"This article points out the limitations of vectoral input pattern on density estimation and Bayesian classification. A continuous Bayesian classifier is proposed to tackle these limitations. The classifier accepts signal as input pattern; thus the problem of optimal description length selection is avoided. The algorithm is evaluated on signal clustering and distribution classification.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Signal Classifier\",\"authors\":\"C. Chow, S. Y. Yuen\",\"doi\":\"10.1109/IJCNN.2007.4370956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article points out the limitations of vectoral input pattern on density estimation and Bayesian classification. A continuous Bayesian classifier is proposed to tackle these limitations. The classifier accepts signal as input pattern; thus the problem of optimal description length selection is avoided. The algorithm is evaluated on signal clustering and distribution classification.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4370956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4370956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文指出了矢量输入模式在密度估计和贝叶斯分类上的局限性。提出了一种连续贝叶斯分类器来解决这些限制。分类器接受信号作为输入模式;从而避免了最优描述长度选择问题。对该算法进行了信号聚类和分布分类评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Signal Classifier
This article points out the limitations of vectoral input pattern on density estimation and Bayesian classification. A continuous Bayesian classifier is proposed to tackle these limitations. The classifier accepts signal as input pattern; thus the problem of optimal description length selection is avoided. The algorithm is evaluated on signal clustering and distribution classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信