{"title":"基于快速逆变器的分布式能源引起的大型混合源微电网级联崩溃","authors":"Jongchan Choi, M. Illindala, A. Mondal, A. Renjit","doi":"10.1109/icps.2018.8370011","DOIUrl":null,"url":null,"abstract":"Power electronics-based distributed energy resources (DERs) are being increasingly deployed for achieving high energy efficiency, power quality, and flexibility of power system operation and controls. They facilitate access to various kinds of energy sources including renewables, fuel cells, microturbines, variable speed engine-generator sets, etc. However, recent tests carried out at the Consortium of Electric Reliability Technology Solutions (CERTS) Microgrid have indicated that their deployment in the mixed source microgrid can cause a cascading collapse during extreme events. Simulation models of two types of DERs are developed in PSCAD/EMTDC software and validated with the experimental test results. The validated models are used to study a cascading collapse problem in a large-scale mixed source microgrid on the benchmark IEEE 33-bus test system. This paper evaluates three alternative techniques to prevent the cascading collapse in the large-scale microgrid caused by fast-acting power electronics-based DERs.","PeriodicalId":142445,"journal":{"name":"2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Cascading collapse of a large-scale mixed source microgrid caused by fast-acting inverter-based distributed energy resources\",\"authors\":\"Jongchan Choi, M. Illindala, A. Mondal, A. Renjit\",\"doi\":\"10.1109/icps.2018.8370011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power electronics-based distributed energy resources (DERs) are being increasingly deployed for achieving high energy efficiency, power quality, and flexibility of power system operation and controls. They facilitate access to various kinds of energy sources including renewables, fuel cells, microturbines, variable speed engine-generator sets, etc. However, recent tests carried out at the Consortium of Electric Reliability Technology Solutions (CERTS) Microgrid have indicated that their deployment in the mixed source microgrid can cause a cascading collapse during extreme events. Simulation models of two types of DERs are developed in PSCAD/EMTDC software and validated with the experimental test results. The validated models are used to study a cascading collapse problem in a large-scale mixed source microgrid on the benchmark IEEE 33-bus test system. This paper evaluates three alternative techniques to prevent the cascading collapse in the large-scale microgrid caused by fast-acting power electronics-based DERs.\",\"PeriodicalId\":142445,\"journal\":{\"name\":\"2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icps.2018.8370011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icps.2018.8370011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cascading collapse of a large-scale mixed source microgrid caused by fast-acting inverter-based distributed energy resources
Power electronics-based distributed energy resources (DERs) are being increasingly deployed for achieving high energy efficiency, power quality, and flexibility of power system operation and controls. They facilitate access to various kinds of energy sources including renewables, fuel cells, microturbines, variable speed engine-generator sets, etc. However, recent tests carried out at the Consortium of Electric Reliability Technology Solutions (CERTS) Microgrid have indicated that their deployment in the mixed source microgrid can cause a cascading collapse during extreme events. Simulation models of two types of DERs are developed in PSCAD/EMTDC software and validated with the experimental test results. The validated models are used to study a cascading collapse problem in a large-scale mixed source microgrid on the benchmark IEEE 33-bus test system. This paper evaluates three alternative techniques to prevent the cascading collapse in the large-scale microgrid caused by fast-acting power electronics-based DERs.