基于同步的液态机分类状态表示

Nicolas Pajot, M. Boukadoum
{"title":"基于同步的液态机分类状态表示","authors":"Nicolas Pajot, M. Boukadoum","doi":"10.1109/ICCICC53683.2021.9811304","DOIUrl":null,"url":null,"abstract":"The Liquid State Machine (LSM) models usually ignore the influence of the liquid state representation on performance, with the assumption that the latter depends only on the readout circuit. The typical decoding of the liquid’s spike trains is achieved with spike rate-based vectors that are input into the readout circuit. This occults the spike timing, a central aspect of biological neural coding, with potentially detrimental consequences on performance. We propose a model of liquid state representation that builds the feature vectors from the temporal information about the spike trains, hence using spike synchrony instead of rate. Using Poisson-distributed spike trains in noisy conditions, we show that such model outperforms a rate-only model in distinguishing spike train pairs, regardless of the frequency chosen to sample the liquid state or the noise level. In the same vein, we suggest a synchrony-based measure of the Separation Property (SP), a core feature of LSMs regarding classification performance, for a more robust and biologically plausible interpretation.","PeriodicalId":101653,"journal":{"name":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchrony-Based State Representation for Classification by Liquid State Machines\",\"authors\":\"Nicolas Pajot, M. Boukadoum\",\"doi\":\"10.1109/ICCICC53683.2021.9811304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Liquid State Machine (LSM) models usually ignore the influence of the liquid state representation on performance, with the assumption that the latter depends only on the readout circuit. The typical decoding of the liquid’s spike trains is achieved with spike rate-based vectors that are input into the readout circuit. This occults the spike timing, a central aspect of biological neural coding, with potentially detrimental consequences on performance. We propose a model of liquid state representation that builds the feature vectors from the temporal information about the spike trains, hence using spike synchrony instead of rate. Using Poisson-distributed spike trains in noisy conditions, we show that such model outperforms a rate-only model in distinguishing spike train pairs, regardless of the frequency chosen to sample the liquid state or the noise level. In the same vein, we suggest a synchrony-based measure of the Separation Property (SP), a core feature of LSMs regarding classification performance, for a more robust and biologically plausible interpretation.\",\"PeriodicalId\":101653,\"journal\":{\"name\":\"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICC53683.2021.9811304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC53683.2021.9811304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

液态机(LSM)模型通常忽略液态表示对性能的影响,假设后者仅取决于读出电路。液体尖峰序列的典型解码是通过输入到读出电路的基于尖峰率的矢量来实现的。这掩盖了脉冲时间,这是生物神经编码的一个核心方面,对表现有潜在的有害影响。我们提出了一种液态表示模型,该模型根据尖峰序列的时间信息构建特征向量,因此使用尖峰同步而不是速率。在噪声条件下使用泊松分布的尖峰序列,我们证明了这种模型在区分尖峰序列对方面优于仅率模型,而不管选择的频率来采样液体状态或噪声水平。同样,我们建议基于同步的分离属性(SP)测量,这是lsm关于分类性能的核心特征,以获得更稳健和生物学上合理的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchrony-Based State Representation for Classification by Liquid State Machines
The Liquid State Machine (LSM) models usually ignore the influence of the liquid state representation on performance, with the assumption that the latter depends only on the readout circuit. The typical decoding of the liquid’s spike trains is achieved with spike rate-based vectors that are input into the readout circuit. This occults the spike timing, a central aspect of biological neural coding, with potentially detrimental consequences on performance. We propose a model of liquid state representation that builds the feature vectors from the temporal information about the spike trains, hence using spike synchrony instead of rate. Using Poisson-distributed spike trains in noisy conditions, we show that such model outperforms a rate-only model in distinguishing spike train pairs, regardless of the frequency chosen to sample the liquid state or the noise level. In the same vein, we suggest a synchrony-based measure of the Separation Property (SP), a core feature of LSMs regarding classification performance, for a more robust and biologically plausible interpretation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信