J. R. Oliveira, R. Calvo, Roseli A. F. Romero, M. Figueiredo
{"title":"基于改进蚁群算法的自适应编队系统协同映射协调方法","authors":"J. R. Oliveira, R. Calvo, Roseli A. F. Romero, M. Figueiredo","doi":"10.1109/SBR.LARS.ROBOCONTROL.2014.16","DOIUrl":null,"url":null,"abstract":"In this work, an approach for cooperative and distributed mapping in a self-adaptive formation system based on a modified version of the ant colony optimization algorithm is proposed. The strategy is distributed, decentralized, real time and it is applied to tasks in which formation characteristic is an essential requirement. The coordination system's design is inspired by the biological mechanisms that define a social organization in collective systems, specifically, the ant colony system. Voronoi tessalation and Delaunay triangulation techniques are used to model the formation strategy. The approach is adaptable for scenarios with suffer changes in the structure of the environment. The performance of the system is evaluated using a simulator. Simulation results show that the cooperative mapping is efficient, the trials are performed considering an indoor environment. Besides results show that the proposed formation approach is able to rearrange spatially the robots as they navigate, changing the relative robot distances according to the spatial environment restrictions.","PeriodicalId":264928,"journal":{"name":"2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Approach for Coordinating of the Cooperative Mapping in a Self-Adaptive Formation System Based on a Modification of the Ant Colony Algorithm\",\"authors\":\"J. R. Oliveira, R. Calvo, Roseli A. F. Romero, M. Figueiredo\",\"doi\":\"10.1109/SBR.LARS.ROBOCONTROL.2014.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an approach for cooperative and distributed mapping in a self-adaptive formation system based on a modified version of the ant colony optimization algorithm is proposed. The strategy is distributed, decentralized, real time and it is applied to tasks in which formation characteristic is an essential requirement. The coordination system's design is inspired by the biological mechanisms that define a social organization in collective systems, specifically, the ant colony system. Voronoi tessalation and Delaunay triangulation techniques are used to model the formation strategy. The approach is adaptable for scenarios with suffer changes in the structure of the environment. The performance of the system is evaluated using a simulator. Simulation results show that the cooperative mapping is efficient, the trials are performed considering an indoor environment. Besides results show that the proposed formation approach is able to rearrange spatially the robots as they navigate, changing the relative robot distances according to the spatial environment restrictions.\",\"PeriodicalId\":264928,\"journal\":{\"name\":\"2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBR.LARS.ROBOCONTROL.2014.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBR.LARS.ROBOCONTROL.2014.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Approach for Coordinating of the Cooperative Mapping in a Self-Adaptive Formation System Based on a Modification of the Ant Colony Algorithm
In this work, an approach for cooperative and distributed mapping in a self-adaptive formation system based on a modified version of the ant colony optimization algorithm is proposed. The strategy is distributed, decentralized, real time and it is applied to tasks in which formation characteristic is an essential requirement. The coordination system's design is inspired by the biological mechanisms that define a social organization in collective systems, specifically, the ant colony system. Voronoi tessalation and Delaunay triangulation techniques are used to model the formation strategy. The approach is adaptable for scenarios with suffer changes in the structure of the environment. The performance of the system is evaluated using a simulator. Simulation results show that the cooperative mapping is efficient, the trials are performed considering an indoor environment. Besides results show that the proposed formation approach is able to rearrange spatially the robots as they navigate, changing the relative robot distances according to the spatial environment restrictions.