PyExplore:没有查询日志的数据探索的查询建议

Apostolos Glenis, G. Koutrika
{"title":"PyExplore:没有查询日志的数据探索的查询建议","authors":"Apostolos Glenis, G. Koutrika","doi":"10.1145/3448016.3452762","DOIUrl":null,"url":null,"abstract":"Helping users explore data becomes increasingly more important as databases get larger and more complex. In this demo, we present PyExplore, a data exploration tool aimed at helping end users formulate queries over new datasets. PyExplore takes as input an initial query from the user along with some parameters and provides interesting queries by leveraging data correlations and diversity.","PeriodicalId":360379,"journal":{"name":"Proceedings of the 2021 International Conference on Management of Data","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"PyExplore: Query Recommendations for Data Exploration without Query Logs\",\"authors\":\"Apostolos Glenis, G. Koutrika\",\"doi\":\"10.1145/3448016.3452762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Helping users explore data becomes increasingly more important as databases get larger and more complex. In this demo, we present PyExplore, a data exploration tool aimed at helping end users formulate queries over new datasets. PyExplore takes as input an initial query from the user along with some parameters and provides interesting queries by leveraging data correlations and diversity.\",\"PeriodicalId\":360379,\"journal\":{\"name\":\"Proceedings of the 2021 International Conference on Management of Data\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448016.3452762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448016.3452762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着数据库变得越来越大、越来越复杂,帮助用户探索数据变得越来越重要。在这个演示中,我们介绍了PyExplore,这是一个数据探索工具,旨在帮助最终用户制定对新数据集的查询。PyExplore将用户的初始查询以及一些参数作为输入,并通过利用数据相关性和多样性提供有趣的查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyExplore: Query Recommendations for Data Exploration without Query Logs
Helping users explore data becomes increasingly more important as databases get larger and more complex. In this demo, we present PyExplore, a data exploration tool aimed at helping end users formulate queries over new datasets. PyExplore takes as input an initial query from the user along with some parameters and provides interesting queries by leveraging data correlations and diversity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信