基于液冷的预制组合式储能系统热管理设计

Xinghua Huang, Han Wu, Yuanliang Fan, Weiming Chen, Zewen Li
{"title":"基于液冷的预制组合式储能系统热管理设计","authors":"Xinghua Huang, Han Wu, Yuanliang Fan, Weiming Chen, Zewen Li","doi":"10.1109/ICPET55165.2022.9918385","DOIUrl":null,"url":null,"abstract":"With the energy density increase of energy storage systems (ESSs), air cooling, as a traditional cooling method, limps along due to low efficiency in heat dissipation and inability in maintaining cell temperature consistency. Liquid cooling is coming downstage. The prefabricated cabined ESS discussed in this paper is the first in China that uses liquid cooling technique. This paper explores its thermal management design. The layout of liquid cooling piping is studied. The specifications of cooling piping, cooling units and dehumidifying air conditioners are discussed. The thermal management strategy is analyzed. Besides, important design steps are simulated. On-site operation data show that the thermal management system automatically regulates temperature according to the predetermined strategy. Cell temperature is modulated to the bound 15°C-30°C and the maximum cell temperature disparity is 3℃. Techno-economic comparison shows that the designed thermal management system consumes 45% less electricity and enhances 43% more energy density than air cooling. This paper aims to provide reference for thermal management design of future ESSs.","PeriodicalId":355634,"journal":{"name":"2022 4th International Conference on Power and Energy Technology (ICPET)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Management Design for Prefabricated Cabined Energy Storage Systems Based on Liquid Cooling\",\"authors\":\"Xinghua Huang, Han Wu, Yuanliang Fan, Weiming Chen, Zewen Li\",\"doi\":\"10.1109/ICPET55165.2022.9918385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the energy density increase of energy storage systems (ESSs), air cooling, as a traditional cooling method, limps along due to low efficiency in heat dissipation and inability in maintaining cell temperature consistency. Liquid cooling is coming downstage. The prefabricated cabined ESS discussed in this paper is the first in China that uses liquid cooling technique. This paper explores its thermal management design. The layout of liquid cooling piping is studied. The specifications of cooling piping, cooling units and dehumidifying air conditioners are discussed. The thermal management strategy is analyzed. Besides, important design steps are simulated. On-site operation data show that the thermal management system automatically regulates temperature according to the predetermined strategy. Cell temperature is modulated to the bound 15°C-30°C and the maximum cell temperature disparity is 3℃. Techno-economic comparison shows that the designed thermal management system consumes 45% less electricity and enhances 43% more energy density than air cooling. This paper aims to provide reference for thermal management design of future ESSs.\",\"PeriodicalId\":355634,\"journal\":{\"name\":\"2022 4th International Conference on Power and Energy Technology (ICPET)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Power and Energy Technology (ICPET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPET55165.2022.9918385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Power and Energy Technology (ICPET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPET55165.2022.9918385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着储能系统能量密度的提高,传统的风冷方式由于散热效率低、无法保持电池温度的一致性而步履蹒跚。液体冷却正在逐渐淡出人们的视线。本文所讨论的预制组合式ESS在国内尚属首次采用液冷技术。本文探讨了其热管理设计。对液冷管路布置进行了研究。对冷却管道、冷却机组和除湿空调的规格进行了讨论。分析了热管理策略。并对重要的设计步骤进行了仿真。现场运行数据表明,热管理系统根据预定策略自动调节温度。电池温度被调制到15°C-30°C之间,最大电池温差为3℃。技术经济对比表明,与风冷相比,设计的热管理系统耗电量减少45%,能量密度提高43%。本文旨在为未来的ess热管理设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Management Design for Prefabricated Cabined Energy Storage Systems Based on Liquid Cooling
With the energy density increase of energy storage systems (ESSs), air cooling, as a traditional cooling method, limps along due to low efficiency in heat dissipation and inability in maintaining cell temperature consistency. Liquid cooling is coming downstage. The prefabricated cabined ESS discussed in this paper is the first in China that uses liquid cooling technique. This paper explores its thermal management design. The layout of liquid cooling piping is studied. The specifications of cooling piping, cooling units and dehumidifying air conditioners are discussed. The thermal management strategy is analyzed. Besides, important design steps are simulated. On-site operation data show that the thermal management system automatically regulates temperature according to the predetermined strategy. Cell temperature is modulated to the bound 15°C-30°C and the maximum cell temperature disparity is 3℃. Techno-economic comparison shows that the designed thermal management system consumes 45% less electricity and enhances 43% more energy density than air cooling. This paper aims to provide reference for thermal management design of future ESSs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信