{"title":"检测药物阿司匹林的不良反应","authors":"Yihui Liu, U. Aickelin","doi":"10.2139/ssrn.2828472","DOIUrl":null,"url":null,"abstract":"Adverse drug reaction (ADR) is widely concerned for public health issue. In this study we propose an original approach to detect the ADRs using feature matrix and feature selection. The experiments are carried out on the drug Aspirin. Major side effects for the drug are detected and better performance is achieved compared to other computerized methods. The detected ADRs are based on the computerized method, further investigation is needed.","PeriodicalId":404759,"journal":{"name":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detect Adverse drug reactions for drug Aspirin\",\"authors\":\"Yihui Liu, U. Aickelin\",\"doi\":\"10.2139/ssrn.2828472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adverse drug reaction (ADR) is widely concerned for public health issue. In this study we propose an original approach to detect the ADRs using feature matrix and feature selection. The experiments are carried out on the drug Aspirin. Major side effects for the drug are detected and better performance is achieved compared to other computerized methods. The detected ADRs are based on the computerized method, further investigation is needed.\",\"PeriodicalId\":404759,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2828472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2828472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adverse drug reaction (ADR) is widely concerned for public health issue. In this study we propose an original approach to detect the ADRs using feature matrix and feature selection. The experiments are carried out on the drug Aspirin. Major side effects for the drug are detected and better performance is achieved compared to other computerized methods. The detected ADRs are based on the computerized method, further investigation is needed.