基于遗传算法优化的BP神经网络预测上海市空气质量指数

Ruijun Yang, Xueqi Hu, Lijun He
{"title":"基于遗传算法优化的BP神经网络预测上海市空气质量指数","authors":"Ruijun Yang, Xueqi Hu, Lijun He","doi":"10.1109/ISCID51228.2020.00052","DOIUrl":null,"url":null,"abstract":"This paper uses PCA (principal component analysis) combined with bp neural network and neural network based on genetic algorithm optimization to predict Shanghai’s AQI (air quality index) respectively. Matlab is used for modeling and simulation. which the prediction and analysis are different The error value and the number of iterations under the algorithm. The results show that the neural network optimized by genetic algorithm can effectively reduce the prediction error of the air quality index compared with the combination of PCA and bp neural network, making the optimized neural network prediction accuracy rate of 90.7%, greatly improving the neural network The learning efficiency has a good performance in predicting the air quality in Shanghai.","PeriodicalId":236797,"journal":{"name":"2020 13th International Symposium on Computational Intelligence and Design (ISCID)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction of Shanghai air quality index based on BP neural network optimized by genetic algorithm\",\"authors\":\"Ruijun Yang, Xueqi Hu, Lijun He\",\"doi\":\"10.1109/ISCID51228.2020.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses PCA (principal component analysis) combined with bp neural network and neural network based on genetic algorithm optimization to predict Shanghai’s AQI (air quality index) respectively. Matlab is used for modeling and simulation. which the prediction and analysis are different The error value and the number of iterations under the algorithm. The results show that the neural network optimized by genetic algorithm can effectively reduce the prediction error of the air quality index compared with the combination of PCA and bp neural network, making the optimized neural network prediction accuracy rate of 90.7%, greatly improving the neural network The learning efficiency has a good performance in predicting the air quality in Shanghai.\",\"PeriodicalId\":236797,\"journal\":{\"name\":\"2020 13th International Symposium on Computational Intelligence and Design (ISCID)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Symposium on Computational Intelligence and Design (ISCID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID51228.2020.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Symposium on Computational Intelligence and Design (ISCID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID51228.2020.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文分别采用主成分分析结合bp神经网络和基于遗传算法优化的神经网络对上海市空气质量指数AQI进行预测。使用Matlab进行建模和仿真。该算法预测和分析的误差值和迭代次数不同。结果表明,与PCA与bp神经网络相结合的方法相比,遗传算法优化后的神经网络能有效降低空气质量指标的预测误差,使优化后的神经网络预测准确率达到90.7%,大大提高了神经网络的学习效率,在预测上海市空气质量方面有较好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Shanghai air quality index based on BP neural network optimized by genetic algorithm
This paper uses PCA (principal component analysis) combined with bp neural network and neural network based on genetic algorithm optimization to predict Shanghai’s AQI (air quality index) respectively. Matlab is used for modeling and simulation. which the prediction and analysis are different The error value and the number of iterations under the algorithm. The results show that the neural network optimized by genetic algorithm can effectively reduce the prediction error of the air quality index compared with the combination of PCA and bp neural network, making the optimized neural network prediction accuracy rate of 90.7%, greatly improving the neural network The learning efficiency has a good performance in predicting the air quality in Shanghai.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信