基于变约束的LMS算法在电力系统谐波参数估计中的性能评价

Muhammad Abbas, Zhao Qingsheng
{"title":"基于变约束的LMS算法在电力系统谐波参数估计中的性能评价","authors":"Muhammad Abbas, Zhao Qingsheng","doi":"10.1109/ICPRE48497.2019.9034891","DOIUrl":null,"url":null,"abstract":"This paper evaluates performance of the proposed variable constrained based Least Mean Square (VCLMS) algorithm in terms of convergence, computational time, steady state error and mean square error. The parameters of a power signal containing inter harmonics, sub harmonics and high order harmonics are estimated using the VCLMS algorithm and the results are compared with Least Mean Square (LMS) and Normalized Least Mean Square (NLMS) algorithms for judging the comparative performance of VCLMS in presence of white Gaussian noise with a signal to noise ratio of 20dB, 30dB and 40dB. Consequently, the proposed algorithm shows faster convergence, smaller mean square error and steady state error with a slightly higher computational time as compared to the other two algorithms. All the experiments are carried out in MATLAB simulating environment.","PeriodicalId":387293,"journal":{"name":"2019 4th International Conference on Power and Renewable Energy (ICPRE)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Variable Constrained Based LMS Algorithm for Power System Harmonic Parameter Estimation\",\"authors\":\"Muhammad Abbas, Zhao Qingsheng\",\"doi\":\"10.1109/ICPRE48497.2019.9034891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates performance of the proposed variable constrained based Least Mean Square (VCLMS) algorithm in terms of convergence, computational time, steady state error and mean square error. The parameters of a power signal containing inter harmonics, sub harmonics and high order harmonics are estimated using the VCLMS algorithm and the results are compared with Least Mean Square (LMS) and Normalized Least Mean Square (NLMS) algorithms for judging the comparative performance of VCLMS in presence of white Gaussian noise with a signal to noise ratio of 20dB, 30dB and 40dB. Consequently, the proposed algorithm shows faster convergence, smaller mean square error and steady state error with a slightly higher computational time as compared to the other two algorithms. All the experiments are carried out in MATLAB simulating environment.\",\"PeriodicalId\":387293,\"journal\":{\"name\":\"2019 4th International Conference on Power and Renewable Energy (ICPRE)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th International Conference on Power and Renewable Energy (ICPRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPRE48497.2019.9034891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Power and Renewable Energy (ICPRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRE48497.2019.9034891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从收敛性、计算时间、稳态误差和均方误差等方面对所提出的基于变量约束的最小均方算法进行了评价。利用VCLMS算法对含有间谐波、次谐波和高阶谐波的功率信号进行参数估计,并将结果与最小均方(LMS)和归一化最小均方(NLMS)算法进行比较,在信噪比分别为20dB、30dB和40dB的高斯白噪声条件下,比较VCLMS算法的性能。因此,与其他两种算法相比,该算法具有更快的收敛速度,更小的均方误差和稳态误差,但计算时间略高。所有实验均在MATLAB仿真环境下进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of Variable Constrained Based LMS Algorithm for Power System Harmonic Parameter Estimation
This paper evaluates performance of the proposed variable constrained based Least Mean Square (VCLMS) algorithm in terms of convergence, computational time, steady state error and mean square error. The parameters of a power signal containing inter harmonics, sub harmonics and high order harmonics are estimated using the VCLMS algorithm and the results are compared with Least Mean Square (LMS) and Normalized Least Mean Square (NLMS) algorithms for judging the comparative performance of VCLMS in presence of white Gaussian noise with a signal to noise ratio of 20dB, 30dB and 40dB. Consequently, the proposed algorithm shows faster convergence, smaller mean square error and steady state error with a slightly higher computational time as compared to the other two algorithms. All the experiments are carried out in MATLAB simulating environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信