无线传感器网络的轻量级在线预测数据聚合

MLSDA '13 Pub Date : 2013-12-02 DOI:10.1145/2542652.2542657
Jeremiah D. Deng, Yue Zhang
{"title":"无线传感器网络的轻量级在线预测数据聚合","authors":"Jeremiah D. Deng, Yue Zhang","doi":"10.1145/2542652.2542657","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) have found many practical applications in recent years. Apart from both the vast new opportunities and challenges raised by the availability of large amounts of sensory data, energy conservation remains a challenging research topic that demands intelligent solutions. Various data aggregation techniques have been proposed in the literature, but the optimal tradeoff between algorithm complexity and prediction ability remains elusive. In this paper we concentrate on employing a few light-weight time series estimation algorithms for online predictive sensing. A number of performance metrics are proposed and employed to examine the effectiveness of the scheme using real-world datasets.","PeriodicalId":248909,"journal":{"name":"MLSDA '13","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Light-weight Online Predictive Data Aggregation for Wireless Sensor Networks\",\"authors\":\"Jeremiah D. Deng, Yue Zhang\",\"doi\":\"10.1145/2542652.2542657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSNs) have found many practical applications in recent years. Apart from both the vast new opportunities and challenges raised by the availability of large amounts of sensory data, energy conservation remains a challenging research topic that demands intelligent solutions. Various data aggregation techniques have been proposed in the literature, but the optimal tradeoff between algorithm complexity and prediction ability remains elusive. In this paper we concentrate on employing a few light-weight time series estimation algorithms for online predictive sensing. A number of performance metrics are proposed and employed to examine the effectiveness of the scheme using real-world datasets.\",\"PeriodicalId\":248909,\"journal\":{\"name\":\"MLSDA '13\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MLSDA '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2542652.2542657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MLSDA '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2542652.2542657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,无线传感器网络(WSNs)得到了许多实际应用。除了大量感官数据的可用性带来的巨大新机遇和挑战之外,节能仍然是一个具有挑战性的研究课题,需要智能的解决方案。文献中已经提出了各种数据聚合技术,但算法复杂性和预测能力之间的最佳权衡仍然难以捉摸。在本文中,我们着重于使用一些轻量级的时间序列估计算法进行在线预测传感。提出了一些性能指标,并使用实际数据集来检验该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Light-weight Online Predictive Data Aggregation for Wireless Sensor Networks
Wireless Sensor Networks (WSNs) have found many practical applications in recent years. Apart from both the vast new opportunities and challenges raised by the availability of large amounts of sensory data, energy conservation remains a challenging research topic that demands intelligent solutions. Various data aggregation techniques have been proposed in the literature, but the optimal tradeoff between algorithm complexity and prediction ability remains elusive. In this paper we concentrate on employing a few light-weight time series estimation algorithms for online predictive sensing. A number of performance metrics are proposed and employed to examine the effectiveness of the scheme using real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信