大数据可视化

S. Kung
{"title":"大数据可视化","authors":"S. Kung","doi":"10.1109/ICCI-CC.2015.7259428","DOIUrl":null,"url":null,"abstract":"Big data has many divergent types of sources, from physical (sensor/IoT) to social and cyber (web) types, rendering it messy, imprecise, and incomplete. Due to its quantitative (volume and velocity) and qualitative (variety) challenges, big data to the users resembles something like “the elephant to the blind men”. It is imperative to enact a major paradigm shift in data mining and learning tools so that information from diversified sources must be integrated together to unravel information hidden in the massive and messy big data, so that, metaphorically speaking, it would let the blind men “see” the elephant. This talk will address yet another vital “V”-paradigm: “Visualization”. Visualization tools are meant to supplement (instead of replace) the domain expertise (e.g. a cardiologist) and provide a big picture to help users formulate critical questions and subsequently postulate heuristic and insightful answers.","PeriodicalId":167843,"journal":{"name":"IEEE International Conference on Cognitive Informatics and Cognitive Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Visualization of big data\",\"authors\":\"S. Kung\",\"doi\":\"10.1109/ICCI-CC.2015.7259428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data has many divergent types of sources, from physical (sensor/IoT) to social and cyber (web) types, rendering it messy, imprecise, and incomplete. Due to its quantitative (volume and velocity) and qualitative (variety) challenges, big data to the users resembles something like “the elephant to the blind men”. It is imperative to enact a major paradigm shift in data mining and learning tools so that information from diversified sources must be integrated together to unravel information hidden in the massive and messy big data, so that, metaphorically speaking, it would let the blind men “see” the elephant. This talk will address yet another vital “V”-paradigm: “Visualization”. Visualization tools are meant to supplement (instead of replace) the domain expertise (e.g. a cardiologist) and provide a big picture to help users formulate critical questions and subsequently postulate heuristic and insightful answers.\",\"PeriodicalId\":167843,\"journal\":{\"name\":\"IEEE International Conference on Cognitive Informatics and Cognitive Computing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Cognitive Informatics and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2015.7259428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2015.7259428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

大数据有许多不同类型的来源,从物理(传感器/物联网)到社交和网络(网络)类型,使其变得混乱、不精确和不完整。由于其定量(体积和速度)和定性(种类)的挑战,大数据对用户来说就像“盲人眼中的大象”。在数据挖掘和学习工具方面,必须进行重大的范式转变,将来自不同来源的信息整合在一起,解开隐藏在海量、杂乱的大数据中的信息,让盲人“看到”大象。这次演讲将讨论另一个重要的“V”范式:“可视化”。可视化工具旨在补充(而不是取代)领域专业知识(例如心脏病专家),并提供一个大的画面,帮助用户制定关键问题,然后假设启发式和有见地的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualization of big data
Big data has many divergent types of sources, from physical (sensor/IoT) to social and cyber (web) types, rendering it messy, imprecise, and incomplete. Due to its quantitative (volume and velocity) and qualitative (variety) challenges, big data to the users resembles something like “the elephant to the blind men”. It is imperative to enact a major paradigm shift in data mining and learning tools so that information from diversified sources must be integrated together to unravel information hidden in the massive and messy big data, so that, metaphorically speaking, it would let the blind men “see” the elephant. This talk will address yet another vital “V”-paradigm: “Visualization”. Visualization tools are meant to supplement (instead of replace) the domain expertise (e.g. a cardiologist) and provide a big picture to help users formulate critical questions and subsequently postulate heuristic and insightful answers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信