FDLM:阻塞性睡眠呼吸暂停和2型糖尿病分类的融合深度学习模型

A. Rajawat, Omair Mohammed, P. Bedi
{"title":"FDLM:阻塞性睡眠呼吸暂停和2型糖尿病分类的融合深度学习模型","authors":"A. Rajawat, Omair Mohammed, P. Bedi","doi":"10.1109/I-SMAC49090.2020.9243553","DOIUrl":null,"url":null,"abstract":"This research paper proposes a Fusion model, which is based on an ensemble majority vote classification, which includes several hidden-layers (BPNN, MP, AS, and SSTM) for classifying Obstructive Sleep Apnea and Diabetes. This paper aims to increase the accuracy in classifying Obstructive Sleep Apnea and Type 2 Diabetes through a Convolutional Neural Network (CNN) and Deep Belief Networks (DBN) using Shifted Filter Responses by identify deep learning features and to reduce the computational time. The experiments are carried out using datasets consisting of attributes of Obstructive Sleep Apnea and Diabetes. The experimental results indicate that the findings are improved than the previous model using the proposed Fusion Deep Learning Model.","PeriodicalId":432766,"journal":{"name":"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"FDLM: Fusion Deep Learning Model for Classifying Obstructive Sleep Apnea and Type 2 Diabetes\",\"authors\":\"A. Rajawat, Omair Mohammed, P. Bedi\",\"doi\":\"10.1109/I-SMAC49090.2020.9243553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper proposes a Fusion model, which is based on an ensemble majority vote classification, which includes several hidden-layers (BPNN, MP, AS, and SSTM) for classifying Obstructive Sleep Apnea and Diabetes. This paper aims to increase the accuracy in classifying Obstructive Sleep Apnea and Type 2 Diabetes through a Convolutional Neural Network (CNN) and Deep Belief Networks (DBN) using Shifted Filter Responses by identify deep learning features and to reduce the computational time. The experiments are carried out using datasets consisting of attributes of Obstructive Sleep Apnea and Diabetes. The experimental results indicate that the findings are improved than the previous model using the proposed Fusion Deep Learning Model.\",\"PeriodicalId\":432766,\"journal\":{\"name\":\"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SMAC49090.2020.9243553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC49090.2020.9243553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种基于集成多数投票分类的融合模型,该模型包括几个隐藏层(BPNN、MP、AS和SSTM),用于对阻塞性睡眠呼吸暂停和糖尿病进行分类。本文旨在通过识别深度学习特征并减少计算时间,通过卷积神经网络(CNN)和深度信念网络(DBN)使用移位滤波响应来提高阻塞性睡眠呼吸暂停和2型糖尿病分类的准确性。实验使用由阻塞性睡眠呼吸暂停和糖尿病属性组成的数据集进行。实验结果表明,使用所提出的融合深度学习模型得到的结果比之前的模型有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FDLM: Fusion Deep Learning Model for Classifying Obstructive Sleep Apnea and Type 2 Diabetes
This research paper proposes a Fusion model, which is based on an ensemble majority vote classification, which includes several hidden-layers (BPNN, MP, AS, and SSTM) for classifying Obstructive Sleep Apnea and Diabetes. This paper aims to increase the accuracy in classifying Obstructive Sleep Apnea and Type 2 Diabetes through a Convolutional Neural Network (CNN) and Deep Belief Networks (DBN) using Shifted Filter Responses by identify deep learning features and to reduce the computational time. The experiments are carried out using datasets consisting of attributes of Obstructive Sleep Apnea and Diabetes. The experimental results indicate that the findings are improved than the previous model using the proposed Fusion Deep Learning Model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信