{"title":"搭载刚性载荷的两个协同RLED机器人机械手鲁棒自适应控制器设计实验研究","authors":"M. Deghat, A. Khayatian, M. Eghtesad","doi":"10.1109/ICMECH.2009.4957134","DOIUrl":null,"url":null,"abstract":"In this paper, a robust-adaptive controller is developed for trajectory tracking of two rigid-link electrically-driven (RLED) robot manipulators carrying a rigid object. First, the dynamic model of the cooperative robots is derived. This model is written in a combined form such that the forces exerted by the object on the manipulators are not explicitly appeared in the dynamic model. A robust-adaptive controller is then applied to the cooperative robotic system in the voltage input level in order to asymptotically stabilize the tracking error. The robust-adaptive controller has the advantage that it does not require an exact knowledge of the dynamical equation of the system as well as its parameters. Furthermore, the controller does not need the measurement of the forces and moments at the contact points. Finally, simulation and experimental results are provided to illustrate the performance of the control algorithm.","PeriodicalId":414967,"journal":{"name":"2009 IEEE International Conference on Mechatronics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimental study of a robust-adaptive controller design for two cooperating RLED robot manipulators carrying a rigid payload\",\"authors\":\"M. Deghat, A. Khayatian, M. Eghtesad\",\"doi\":\"10.1109/ICMECH.2009.4957134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a robust-adaptive controller is developed for trajectory tracking of two rigid-link electrically-driven (RLED) robot manipulators carrying a rigid object. First, the dynamic model of the cooperative robots is derived. This model is written in a combined form such that the forces exerted by the object on the manipulators are not explicitly appeared in the dynamic model. A robust-adaptive controller is then applied to the cooperative robotic system in the voltage input level in order to asymptotically stabilize the tracking error. The robust-adaptive controller has the advantage that it does not require an exact knowledge of the dynamical equation of the system as well as its parameters. Furthermore, the controller does not need the measurement of the forces and moments at the contact points. Finally, simulation and experimental results are provided to illustrate the performance of the control algorithm.\",\"PeriodicalId\":414967,\"journal\":{\"name\":\"2009 IEEE International Conference on Mechatronics\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECH.2009.4957134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2009.4957134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental study of a robust-adaptive controller design for two cooperating RLED robot manipulators carrying a rigid payload
In this paper, a robust-adaptive controller is developed for trajectory tracking of two rigid-link electrically-driven (RLED) robot manipulators carrying a rigid object. First, the dynamic model of the cooperative robots is derived. This model is written in a combined form such that the forces exerted by the object on the manipulators are not explicitly appeared in the dynamic model. A robust-adaptive controller is then applied to the cooperative robotic system in the voltage input level in order to asymptotically stabilize the tracking error. The robust-adaptive controller has the advantage that it does not require an exact knowledge of the dynamical equation of the system as well as its parameters. Furthermore, the controller does not need the measurement of the forces and moments at the contact points. Finally, simulation and experimental results are provided to illustrate the performance of the control algorithm.