局部凸空间中常线性微分方程可解性的一些结果

S. Shkarin
{"title":"局部凸空间中常线性微分方程可解性的一些结果","authors":"S. Shkarin","doi":"10.1070/SM1992v071n01ABEH002126","DOIUrl":null,"url":null,"abstract":"Let be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem , , with respect to functions . It is proved that if , then for an arbitrary set . It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to , does not belong to .","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"45-46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"SOME RESULTS ON SOLVABILITY OF ORDINARY LINEAR DIFFERENTIAL EQUATIONS IN LOCALLY CONVEX SPACES\",\"authors\":\"S. Shkarin\",\"doi\":\"10.1070/SM1992v071n01ABEH002126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem , , with respect to functions . It is proved that if , then for an arbitrary set . It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to , does not belong to .\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"45-46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992v071n01ABEH002126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992v071n01ABEH002126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

设序列完备局部凸空间的一类,使得关于函数的线性柯西问题的存在性定理成立。证明了如果,则对于任意集合。证明了无限多个不同构于的无限维Frechet空间的拓扑积不属于。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME RESULTS ON SOLVABILITY OF ORDINARY LINEAR DIFFERENTIAL EQUATIONS IN LOCALLY CONVEX SPACES
Let be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem , , with respect to functions . It is proved that if , then for an arbitrary set . It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to , does not belong to .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信