改进频域盲反卷积算法在轴承声故障特征提取中的应用

Lifeng Kan, Nan Pan, Zeguang Yi
{"title":"改进频域盲反卷积算法在轴承声故障特征提取中的应用","authors":"Lifeng Kan, Nan Pan, Zeguang Yi","doi":"10.1109/ICINFA.2016.7831924","DOIUrl":null,"url":null,"abstract":"In this paper, acoustic fault diagnosis method based on frequency domain blind deconvolution was used to separate different sources of error characteristic signal from the mixed acoustic signal collected in microphone. Sliding window short time Fourier transform (STFT) is used to convert time domain convolution mixture model into a instantaneous frequency domain mixture model, and Improved complex fixed-point algorithms is used for the blind separation process of complex signals of the same frequency. Kullback-Leibler (KL) distance is calculated to solve order uncertainty from the blind source separation process, then wavelet analysis is used to reconstructed separated signal details to get the final split signals. Finally, by analyzing the computer simulative signal and experiments for the test rig for rolling bearing, the effectiveness of the algorithm can be verified.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved frequency domain blind deconvolution algorithm in acoustic fault feature extraction of bearing\",\"authors\":\"Lifeng Kan, Nan Pan, Zeguang Yi\",\"doi\":\"10.1109/ICINFA.2016.7831924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, acoustic fault diagnosis method based on frequency domain blind deconvolution was used to separate different sources of error characteristic signal from the mixed acoustic signal collected in microphone. Sliding window short time Fourier transform (STFT) is used to convert time domain convolution mixture model into a instantaneous frequency domain mixture model, and Improved complex fixed-point algorithms is used for the blind separation process of complex signals of the same frequency. Kullback-Leibler (KL) distance is calculated to solve order uncertainty from the blind source separation process, then wavelet analysis is used to reconstructed separated signal details to get the final split signals. Finally, by analyzing the computer simulative signal and experiments for the test rig for rolling bearing, the effectiveness of the algorithm can be verified.\",\"PeriodicalId\":389619,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2016.7831924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7831924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用基于频域盲反卷积的声学故障诊断方法,从麦克风采集的混合声信号中分离出不同来源的误差特征信号。采用滑动窗口短时傅里叶变换(STFT)将时域卷积混合模型转化为瞬时频域混合模型,并采用改进的复不动点算法对同频复信号进行盲分离处理。通过计算Kullback-Leibler (KL)距离来解决盲源分离过程中的阶数不确定性,然后利用小波分析对分离信号细节进行重构,得到最终的分离信号。最后,通过对计算机仿真信号的分析和滚动轴承试验台的实验,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved frequency domain blind deconvolution algorithm in acoustic fault feature extraction of bearing
In this paper, acoustic fault diagnosis method based on frequency domain blind deconvolution was used to separate different sources of error characteristic signal from the mixed acoustic signal collected in microphone. Sliding window short time Fourier transform (STFT) is used to convert time domain convolution mixture model into a instantaneous frequency domain mixture model, and Improved complex fixed-point algorithms is used for the blind separation process of complex signals of the same frequency. Kullback-Leibler (KL) distance is calculated to solve order uncertainty from the blind source separation process, then wavelet analysis is used to reconstructed separated signal details to get the final split signals. Finally, by analyzing the computer simulative signal and experiments for the test rig for rolling bearing, the effectiveness of the algorithm can be verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信