{"title":"基于降维和数据可视化的混合神经分类器及其在感应电机故障检测和分类中的应用","authors":"Mahnoosh Nadjarpoorsiyahkaly, C. Lim","doi":"10.1109/BIC-TA.2011.19","DOIUrl":null,"url":null,"abstract":"In this paper, a hybrid neural classifier combining the auto-encoder neural network and the Lattice Vector Quantization (LVQ) model is described. The auto-encoder network is used for dimensionality reduction by projecting high dimensional data into the 2D space. The LVQ model is used for data visualization by forming and adapting the granularity of a data map. The mapped data are employed to predict the target classes of new data samples. To improve classification accuracy, a majority voting scheme is adopted by the hybrid classifier. To demonstrate the applicability of the hybrid classifier, a series of experiments using simulated and real fault data from induction motors is conducted. The results show that the hybrid classifier is able to outperform the Multi-Layer Perceptron neural network, and to produce very good classification accuracy rates for various fault conditions of induction motors.","PeriodicalId":211822,"journal":{"name":"2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Neural Classifier for Dimensionality Reduction and Data Visualization and Its Application to Fault Detection and Classification of Induction Motors\",\"authors\":\"Mahnoosh Nadjarpoorsiyahkaly, C. Lim\",\"doi\":\"10.1109/BIC-TA.2011.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a hybrid neural classifier combining the auto-encoder neural network and the Lattice Vector Quantization (LVQ) model is described. The auto-encoder network is used for dimensionality reduction by projecting high dimensional data into the 2D space. The LVQ model is used for data visualization by forming and adapting the granularity of a data map. The mapped data are employed to predict the target classes of new data samples. To improve classification accuracy, a majority voting scheme is adopted by the hybrid classifier. To demonstrate the applicability of the hybrid classifier, a series of experiments using simulated and real fault data from induction motors is conducted. The results show that the hybrid classifier is able to outperform the Multi-Layer Perceptron neural network, and to produce very good classification accuracy rates for various fault conditions of induction motors.\",\"PeriodicalId\":211822,\"journal\":{\"name\":\"2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIC-TA.2011.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIC-TA.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Neural Classifier for Dimensionality Reduction and Data Visualization and Its Application to Fault Detection and Classification of Induction Motors
In this paper, a hybrid neural classifier combining the auto-encoder neural network and the Lattice Vector Quantization (LVQ) model is described. The auto-encoder network is used for dimensionality reduction by projecting high dimensional data into the 2D space. The LVQ model is used for data visualization by forming and adapting the granularity of a data map. The mapped data are employed to predict the target classes of new data samples. To improve classification accuracy, a majority voting scheme is adopted by the hybrid classifier. To demonstrate the applicability of the hybrid classifier, a series of experiments using simulated and real fault data from induction motors is conducted. The results show that the hybrid classifier is able to outperform the Multi-Layer Perceptron neural network, and to produce very good classification accuracy rates for various fault conditions of induction motors.