{"title":"直流系统稳定性和直流稳定性工具箱","authors":"S. Sudhoff","doi":"10.1109/ESTS.2017.8069350","DOIUrl":null,"url":null,"abstract":"Consider the system dx/dt = f(X) f(0)=0 Then the origin is an asymptotically stable equilibrium of the nonlinear system if A, the Jacobian matrix of f, evaluated at the origin, has all its eigenvalues in the open left-half plane.","PeriodicalId":227033,"journal":{"name":"2017 IEEE Electric Ship Technologies Symposium (ESTS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DC system stability and the the DC stability toolbox\",\"authors\":\"S. Sudhoff\",\"doi\":\"10.1109/ESTS.2017.8069350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the system dx/dt = f(X) f(0)=0 Then the origin is an asymptotically stable equilibrium of the nonlinear system if A, the Jacobian matrix of f, evaluated at the origin, has all its eigenvalues in the open left-half plane.\",\"PeriodicalId\":227033,\"journal\":{\"name\":\"2017 IEEE Electric Ship Technologies Symposium (ESTS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Electric Ship Technologies Symposium (ESTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2017.8069350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Electric Ship Technologies Symposium (ESTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2017.8069350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DC system stability and the the DC stability toolbox
Consider the system dx/dt = f(X) f(0)=0 Then the origin is an asymptotically stable equilibrium of the nonlinear system if A, the Jacobian matrix of f, evaluated at the origin, has all its eigenvalues in the open left-half plane.