一种用于文本分类聚类的低维表示学习方法

Xiang Wang, Yunfan Liao, Junxing Zhu, Bin Zhou, Yan Jia
{"title":"一种用于文本分类聚类的低维表示学习方法","authors":"Xiang Wang, Yunfan Liao, Junxing Zhu, Bin Zhou, Yan Jia","doi":"10.1109/DSC50466.2020.00039","DOIUrl":null,"url":null,"abstract":"Natural language processing applications often suffer the curse of dimensionality. In this paper, we propose a low-dimensional text representation learning algorithm, which preserves the pairwise similarity relations of texts. Our method maximizes the log-probability of observing similar texts conditioned on its feature representation. To generate enough similar text pairs for training the objective function, we first build an adjacency graph based on the pairwise similarity relations of the texts, and then propose a simulated sampling strategy to generate the co-occurrence text sequences from the adjacency graph. Experiments on four long and short text datasets demonstrate that our method outperforms several state-of-the-art dimensionality reduction methods. Our method is also better than Doc2vec except on the 20 Newsgroups” dataset for text clustering. Our method can also be applied to the representation learning of images rather than specified in texts.","PeriodicalId":423182,"journal":{"name":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Low-Dimensional Representation Learning Method for Text Classification and Clustering\",\"authors\":\"Xiang Wang, Yunfan Liao, Junxing Zhu, Bin Zhou, Yan Jia\",\"doi\":\"10.1109/DSC50466.2020.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural language processing applications often suffer the curse of dimensionality. In this paper, we propose a low-dimensional text representation learning algorithm, which preserves the pairwise similarity relations of texts. Our method maximizes the log-probability of observing similar texts conditioned on its feature representation. To generate enough similar text pairs for training the objective function, we first build an adjacency graph based on the pairwise similarity relations of the texts, and then propose a simulated sampling strategy to generate the co-occurrence text sequences from the adjacency graph. Experiments on four long and short text datasets demonstrate that our method outperforms several state-of-the-art dimensionality reduction methods. Our method is also better than Doc2vec except on the 20 Newsgroups” dataset for text clustering. Our method can also be applied to the representation learning of images rather than specified in texts.\",\"PeriodicalId\":423182,\"journal\":{\"name\":\"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC50466.2020.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC50466.2020.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自然语言处理应用程序经常遭受维度的诅咒。在本文中,我们提出了一种低维文本表示学习算法,该算法保留了文本的成对相似关系。我们的方法最大限度地提高了观察相似文本的对数概率,这取决于其特征表示。为了生成足够的相似文本对用于训练目标函数,我们首先基于文本的成对相似关系构建邻接图,然后提出一种模拟采样策略,从邻接图中生成共现文本序列。在四个长文本和短文本数据集上的实验表明,我们的方法优于几种最先进的降维方法。除了在“20新闻组”数据集上进行文本聚类外,我们的方法也优于Doc2vec。我们的方法也可以应用于图像的表示学习,而不是在文本中指定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Low-Dimensional Representation Learning Method for Text Classification and Clustering
Natural language processing applications often suffer the curse of dimensionality. In this paper, we propose a low-dimensional text representation learning algorithm, which preserves the pairwise similarity relations of texts. Our method maximizes the log-probability of observing similar texts conditioned on its feature representation. To generate enough similar text pairs for training the objective function, we first build an adjacency graph based on the pairwise similarity relations of the texts, and then propose a simulated sampling strategy to generate the co-occurrence text sequences from the adjacency graph. Experiments on four long and short text datasets demonstrate that our method outperforms several state-of-the-art dimensionality reduction methods. Our method is also better than Doc2vec except on the 20 Newsgroups” dataset for text clustering. Our method can also be applied to the representation learning of images rather than specified in texts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信