基于ais的未来船舶避碰多轨迹预测方法

B. Murray, L. Perera
{"title":"基于ais的未来船舶避碰多轨迹预测方法","authors":"B. Murray, L. Perera","doi":"10.1115/omae2019-95963","DOIUrl":null,"url":null,"abstract":"\n This study presents a method to predict the future trajectory of a target vessel using historical AIS data. The purpose of such a prediction is to aid in collision avoidance in future vessels. The method presented in this study extracts all trajectories present in an initial cluster centered about a vessel position. Features for each trajectory are then generated using Principle Component Analysis and used in clustering via unsupervised Gaussian mixture modeling. Each resultant cluster represents a possible future route the vessel may follow. A trajectory prediction is then conducted with respect to each cluster of trajectories discovered. This results in a prediction of multiple possible trajectories. The results indicate that the algorithm is effective in clustering the trajectories, where at least one cluster corresponds to the true trajectory of the vessel. The resultant predicted trajectories are also found to be reasonably accurate.","PeriodicalId":124589,"journal":{"name":"Volume 7B: Ocean Engineering","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An AIS-Based Multiple Trajectory Prediction Approach for Collision Avoidance in Future Vessels\",\"authors\":\"B. Murray, L. Perera\",\"doi\":\"10.1115/omae2019-95963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study presents a method to predict the future trajectory of a target vessel using historical AIS data. The purpose of such a prediction is to aid in collision avoidance in future vessels. The method presented in this study extracts all trajectories present in an initial cluster centered about a vessel position. Features for each trajectory are then generated using Principle Component Analysis and used in clustering via unsupervised Gaussian mixture modeling. Each resultant cluster represents a possible future route the vessel may follow. A trajectory prediction is then conducted with respect to each cluster of trajectories discovered. This results in a prediction of multiple possible trajectories. The results indicate that the algorithm is effective in clustering the trajectories, where at least one cluster corresponds to the true trajectory of the vessel. The resultant predicted trajectories are also found to be reasonably accurate.\",\"PeriodicalId\":124589,\"journal\":{\"name\":\"Volume 7B: Ocean Engineering\",\"volume\":\"363 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本研究提出了一种利用历史AIS数据预测目标船只未来轨迹的方法。这种预测的目的是帮助未来船舶避免碰撞。本研究中提出的方法提取了以血管位置为中心的初始聚类中存在的所有轨迹。然后使用主成分分析生成每个轨迹的特征,并通过无监督高斯混合建模用于聚类。每个结果簇代表了船只未来可能遵循的路线。然后对发现的每一簇轨迹进行轨迹预测。这导致了对多种可能轨迹的预测。结果表明,该算法对轨迹进行聚类是有效的,其中至少有一个聚类对应于船舶的真实轨迹。由此预测的轨迹也被认为是相当准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An AIS-Based Multiple Trajectory Prediction Approach for Collision Avoidance in Future Vessels
This study presents a method to predict the future trajectory of a target vessel using historical AIS data. The purpose of such a prediction is to aid in collision avoidance in future vessels. The method presented in this study extracts all trajectories present in an initial cluster centered about a vessel position. Features for each trajectory are then generated using Principle Component Analysis and used in clustering via unsupervised Gaussian mixture modeling. Each resultant cluster represents a possible future route the vessel may follow. A trajectory prediction is then conducted with respect to each cluster of trajectories discovered. This results in a prediction of multiple possible trajectories. The results indicate that the algorithm is effective in clustering the trajectories, where at least one cluster corresponds to the true trajectory of the vessel. The resultant predicted trajectories are also found to be reasonably accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信