基于渐进式深度神经网络的语音信号增强技术研究

Teng Haikun, Li Lunbin, W. Shiying
{"title":"基于渐进式深度神经网络的语音信号增强技术研究","authors":"Teng Haikun, Li Lunbin, W. Shiying","doi":"10.1145/3407703.3407732","DOIUrl":null,"url":null,"abstract":"Traditional speech enhancement methods have some shortcomings when processing sound signals. For example, under low signal-to-noise ratio, the residual of music noise is heavy; the effect of non-stationary noise suppression is not obvious; they are all based on the assumption that the noise is a stationary process. In this paper, the progressive speech enhancement method based on neural network, through experimental comparison, can effectively improve the problems of traditional speech enhancement methods.","PeriodicalId":284603,"journal":{"name":"Proceedings of the 2020 Artificial Intelligence and Complex Systems Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Speech Signal Enhancement Technology Based on Progressive Deep Neural Network\",\"authors\":\"Teng Haikun, Li Lunbin, W. Shiying\",\"doi\":\"10.1145/3407703.3407732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional speech enhancement methods have some shortcomings when processing sound signals. For example, under low signal-to-noise ratio, the residual of music noise is heavy; the effect of non-stationary noise suppression is not obvious; they are all based on the assumption that the noise is a stationary process. In this paper, the progressive speech enhancement method based on neural network, through experimental comparison, can effectively improve the problems of traditional speech enhancement methods.\",\"PeriodicalId\":284603,\"journal\":{\"name\":\"Proceedings of the 2020 Artificial Intelligence and Complex Systems Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 Artificial Intelligence and Complex Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3407703.3407732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Artificial Intelligence and Complex Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3407703.3407732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的语音增强方法在处理声音信号时存在一些不足。例如,在低信噪比下,音乐噪声残留较重;非平稳噪声抑制效果不明显;它们都基于噪声是一个平稳过程的假设。本文提出了基于神经网络的渐进式语音增强方法,通过实验对比,可以有效改善传统语音增强方法存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Speech Signal Enhancement Technology Based on Progressive Deep Neural Network
Traditional speech enhancement methods have some shortcomings when processing sound signals. For example, under low signal-to-noise ratio, the residual of music noise is heavy; the effect of non-stationary noise suppression is not obvious; they are all based on the assumption that the noise is a stationary process. In this paper, the progressive speech enhancement method based on neural network, through experimental comparison, can effectively improve the problems of traditional speech enhancement methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信