使用深度图来寻找有趣的区域

Michael Borck, R. Palmer, G. West, T. Tan
{"title":"使用深度图来寻找有趣的区域","authors":"Michael Borck, R. Palmer, G. West, T. Tan","doi":"10.1109/TENCONSPRING.2014.6862998","DOIUrl":null,"url":null,"abstract":"Automated recognition and analysis of objects in images from urban transport corridors are important for many applications including asset management, measurement, location, analysis and change detection. Vehicle-based mobile mapping systems capture co-registered imagery and 3D point cloud information over hundreds of kilometers of transport corridor. Methods for extracting information from these large datasets are labour intensive and automatic methods are desired. This paper uses a depth map to segment regions of interest in colour images. Quantitative tests were carried out on two datasets. Experiments show that the resulting regions are relatively coarse, but overall the method is effective, and has the benefit of easy implementation.","PeriodicalId":270495,"journal":{"name":"2014 IEEE REGION 10 SYMPOSIUM","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using depth maps to find interesting regions\",\"authors\":\"Michael Borck, R. Palmer, G. West, T. Tan\",\"doi\":\"10.1109/TENCONSPRING.2014.6862998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated recognition and analysis of objects in images from urban transport corridors are important for many applications including asset management, measurement, location, analysis and change detection. Vehicle-based mobile mapping systems capture co-registered imagery and 3D point cloud information over hundreds of kilometers of transport corridor. Methods for extracting information from these large datasets are labour intensive and automatic methods are desired. This paper uses a depth map to segment regions of interest in colour images. Quantitative tests were carried out on two datasets. Experiments show that the resulting regions are relatively coarse, but overall the method is effective, and has the benefit of easy implementation.\",\"PeriodicalId\":270495,\"journal\":{\"name\":\"2014 IEEE REGION 10 SYMPOSIUM\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE REGION 10 SYMPOSIUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCONSPRING.2014.6862998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE REGION 10 SYMPOSIUM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2014.6862998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动识别和分析城市交通走廊图像中的物体对于许多应用都很重要,包括资产管理、测量、定位、分析和变化检测。基于车辆的移动地图系统在数百公里的交通走廊上捕获共同注册的图像和3D点云信息。从这些大型数据集中提取信息的方法是劳动密集型的,需要自动方法。本文使用深度图对彩色图像中感兴趣的区域进行分割。对两个数据集进行了定量测试。实验表明,所得区域相对粗糙,但总体上是有效的,并且具有易于实现的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using depth maps to find interesting regions
Automated recognition and analysis of objects in images from urban transport corridors are important for many applications including asset management, measurement, location, analysis and change detection. Vehicle-based mobile mapping systems capture co-registered imagery and 3D point cloud information over hundreds of kilometers of transport corridor. Methods for extracting information from these large datasets are labour intensive and automatic methods are desired. This paper uses a depth map to segment regions of interest in colour images. Quantitative tests were carried out on two datasets. Experiments show that the resulting regions are relatively coarse, but overall the method is effective, and has the benefit of easy implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信