{"title":"用于车辆定位的快速符号道路标记和停车线检测","authors":"J. Suhr, H. Jung","doi":"10.1109/IVS.2015.7225684","DOIUrl":null,"url":null,"abstract":"This paper proposes a fast method for detecting symbolic road markings (SRMs) and stop-lines. The proposed method efficiently restricts the search area based on the lane detection results and finds SRMs and stop-lines in a cost-effective manner. The SRM detector generates multiple SRM candidates using a top-hat filter and projection histogram and classifies their types using a histogram of oriented gradient (HOG) feature and total error rate (TER)-based classifier. The stop-line detector creates stop-line candidates via random sample consensus (RANSAC)-based parallel line pair estimation and verifies them using the HOG feature and TER-based classifier. The proposed method achieves reasonable detection rates and extremely low false positive rates along with a fast computing time.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Fast symbolic road marking and stop-line detection for vehicle localization\",\"authors\":\"J. Suhr, H. Jung\",\"doi\":\"10.1109/IVS.2015.7225684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a fast method for detecting symbolic road markings (SRMs) and stop-lines. The proposed method efficiently restricts the search area based on the lane detection results and finds SRMs and stop-lines in a cost-effective manner. The SRM detector generates multiple SRM candidates using a top-hat filter and projection histogram and classifies their types using a histogram of oriented gradient (HOG) feature and total error rate (TER)-based classifier. The stop-line detector creates stop-line candidates via random sample consensus (RANSAC)-based parallel line pair estimation and verifies them using the HOG feature and TER-based classifier. The proposed method achieves reasonable detection rates and extremely low false positive rates along with a fast computing time.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast symbolic road marking and stop-line detection for vehicle localization
This paper proposes a fast method for detecting symbolic road markings (SRMs) and stop-lines. The proposed method efficiently restricts the search area based on the lane detection results and finds SRMs and stop-lines in a cost-effective manner. The SRM detector generates multiple SRM candidates using a top-hat filter and projection histogram and classifies their types using a histogram of oriented gradient (HOG) feature and total error rate (TER)-based classifier. The stop-line detector creates stop-line candidates via random sample consensus (RANSAC)-based parallel line pair estimation and verifies them using the HOG feature and TER-based classifier. The proposed method achieves reasonable detection rates and extremely low false positive rates along with a fast computing time.