用于车辆定位的快速符号道路标记和停车线检测

J. Suhr, H. Jung
{"title":"用于车辆定位的快速符号道路标记和停车线检测","authors":"J. Suhr, H. Jung","doi":"10.1109/IVS.2015.7225684","DOIUrl":null,"url":null,"abstract":"This paper proposes a fast method for detecting symbolic road markings (SRMs) and stop-lines. The proposed method efficiently restricts the search area based on the lane detection results and finds SRMs and stop-lines in a cost-effective manner. The SRM detector generates multiple SRM candidates using a top-hat filter and projection histogram and classifies their types using a histogram of oriented gradient (HOG) feature and total error rate (TER)-based classifier. The stop-line detector creates stop-line candidates via random sample consensus (RANSAC)-based parallel line pair estimation and verifies them using the HOG feature and TER-based classifier. The proposed method achieves reasonable detection rates and extremely low false positive rates along with a fast computing time.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Fast symbolic road marking and stop-line detection for vehicle localization\",\"authors\":\"J. Suhr, H. Jung\",\"doi\":\"10.1109/IVS.2015.7225684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a fast method for detecting symbolic road markings (SRMs) and stop-lines. The proposed method efficiently restricts the search area based on the lane detection results and finds SRMs and stop-lines in a cost-effective manner. The SRM detector generates multiple SRM candidates using a top-hat filter and projection histogram and classifies their types using a histogram of oriented gradient (HOG) feature and total error rate (TER)-based classifier. The stop-line detector creates stop-line candidates via random sample consensus (RANSAC)-based parallel line pair estimation and verifies them using the HOG feature and TER-based classifier. The proposed method achieves reasonable detection rates and extremely low false positive rates along with a fast computing time.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

提出了一种快速检测道路标志和停车线的方法。该方法基于车道检测结果有效地限制了搜索区域,并以经济有效的方式找到了srm和停车线。SRM检测器使用顶帽过滤器和投影直方图生成多个SRM候选对象,并使用定向梯度直方图(HOG)特征和基于总错误率(TER)的分类器对它们的类型进行分类。停止线检测器通过基于随机样本共识(RANSAC)的平行线对估计创建停止线候选,并使用HOG特征和基于ter的分类器对它们进行验证。该方法实现了合理的检测率和极低的误报率,计算速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast symbolic road marking and stop-line detection for vehicle localization
This paper proposes a fast method for detecting symbolic road markings (SRMs) and stop-lines. The proposed method efficiently restricts the search area based on the lane detection results and finds SRMs and stop-lines in a cost-effective manner. The SRM detector generates multiple SRM candidates using a top-hat filter and projection histogram and classifies their types using a histogram of oriented gradient (HOG) feature and total error rate (TER)-based classifier. The stop-line detector creates stop-line candidates via random sample consensus (RANSAC)-based parallel line pair estimation and verifies them using the HOG feature and TER-based classifier. The proposed method achieves reasonable detection rates and extremely low false positive rates along with a fast computing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信