利用进化TPG在nbti关键路径上复兴纳米级逻辑

N. Palermo, Valentin Tihhomirov, T. Copetti, M. Jenihhin, J. Raik, S. Kostin, M. Gaudesi, Giovanni Squillero, M. Reorda, F. Vargas, L. Bolzani
{"title":"利用进化TPG在nbti关键路径上复兴纳米级逻辑","authors":"N. Palermo, Valentin Tihhomirov, T. Copetti, M. Jenihhin, J. Raik, S. Kostin, M. Gaudesi, Giovanni Squillero, M. Reorda, F. Vargas, L. Bolzani","doi":"10.1109/LATW.2015.7102405","DOIUrl":null,"url":null,"abstract":"One of the main reliability concerns in the nanoscale logic is the time-dependent variation caused by Negative Bias Temperature Instability (NBTI). It increases the threshold voltage of pMOS transistors, which slows down signal propagation along the paths between flip-flops. As a consequence, NBTI may cause transient faults and, ultimately, permanent circuit functional failure. In this paper, we propose an innovative NBTI mitigation approach by rejuvenation of nanoscale logic along NBTI-critical paths. The method is based on hierarchical NBTI-critical paths identification and rejuvenation stimuli generation using an Evolutionary Algorithm. The rejuvenation stimuli are used to drive to the recovery phase the pMOS transistors that are the most significant for the NBTI-induced path delay. This rejuvenation procedure is to be applied to the circuit as an execution overhead at predefined periods. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics. Experimental results are demonstrated by electrical simulations of an ALU circuit design.","PeriodicalId":135940,"journal":{"name":"2015 16th Latin-American Test Symposium (LATS)","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rejuvenation of nanoscale logic at NBTI-critical paths using evolutionary TPG\",\"authors\":\"N. Palermo, Valentin Tihhomirov, T. Copetti, M. Jenihhin, J. Raik, S. Kostin, M. Gaudesi, Giovanni Squillero, M. Reorda, F. Vargas, L. Bolzani\",\"doi\":\"10.1109/LATW.2015.7102405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main reliability concerns in the nanoscale logic is the time-dependent variation caused by Negative Bias Temperature Instability (NBTI). It increases the threshold voltage of pMOS transistors, which slows down signal propagation along the paths between flip-flops. As a consequence, NBTI may cause transient faults and, ultimately, permanent circuit functional failure. In this paper, we propose an innovative NBTI mitigation approach by rejuvenation of nanoscale logic along NBTI-critical paths. The method is based on hierarchical NBTI-critical paths identification and rejuvenation stimuli generation using an Evolutionary Algorithm. The rejuvenation stimuli are used to drive to the recovery phase the pMOS transistors that are the most significant for the NBTI-induced path delay. This rejuvenation procedure is to be applied to the circuit as an execution overhead at predefined periods. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics. Experimental results are demonstrated by electrical simulations of an ALU circuit design.\",\"PeriodicalId\":135940,\"journal\":{\"name\":\"2015 16th Latin-American Test Symposium (LATS)\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th Latin-American Test Symposium (LATS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATW.2015.7102405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th Latin-American Test Symposium (LATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATW.2015.7102405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

负偏置温度不稳定性(NBTI)引起的时间依赖性变化是纳米级逻辑中主要的可靠性问题之一。它增加了pMOS晶体管的阈值电压,从而减慢了信号沿着触发器之间的路径传播。因此,NBTI可能导致瞬态故障,并最终导致永久性电路功能故障。在本文中,我们提出了一种创新的NBTI缓解方法,通过沿着NBTI关键路径恢复纳米级逻辑。该方法基于分层的nbti关键路径识别和使用进化算法生成复兴刺激。年轻化刺激用于驱动对nbti诱导的路径延迟最显著的pMOS晶体管进入恢复阶段。这个恢复程序将在预先确定的周期内作为执行开销应用于电路。提出的方法旨在延长纳米电子学的可靠寿命。通过对ALU电路设计的电学仿真,验证了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rejuvenation of nanoscale logic at NBTI-critical paths using evolutionary TPG
One of the main reliability concerns in the nanoscale logic is the time-dependent variation caused by Negative Bias Temperature Instability (NBTI). It increases the threshold voltage of pMOS transistors, which slows down signal propagation along the paths between flip-flops. As a consequence, NBTI may cause transient faults and, ultimately, permanent circuit functional failure. In this paper, we propose an innovative NBTI mitigation approach by rejuvenation of nanoscale logic along NBTI-critical paths. The method is based on hierarchical NBTI-critical paths identification and rejuvenation stimuli generation using an Evolutionary Algorithm. The rejuvenation stimuli are used to drive to the recovery phase the pMOS transistors that are the most significant for the NBTI-induced path delay. This rejuvenation procedure is to be applied to the circuit as an execution overhead at predefined periods. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics. Experimental results are demonstrated by electrical simulations of an ALU circuit design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信