计算金融中求解偏微分方程的快速高精度数值方法

Yin Wang, Kun Hua, Jun Zhang
{"title":"计算金融中求解偏微分方程的快速高精度数值方法","authors":"Yin Wang, Kun Hua, Jun Zhang","doi":"10.1109/BCGIN.2011.84","DOIUrl":null,"url":null,"abstract":"We develop a new W-cycle multiscale multigrid method that can use the existing multilevel (different scale) grid hierarchy to approximate the sixth order solution of Poisson equation based on the fourth order discretization schemes. Richardson extrapolation procedure is used on the fine grid level in multigrid method. Numerical results are conducted to show the solution accuracy and the computational efficiency of our new method, compared to Wang-Zhang's sixth order multiscale multigrid method using V-cycle.","PeriodicalId":127523,"journal":{"name":"2011 International Conference on Business Computing and Global Informatization","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast and High Accuracy Numerical Methods for Solving PDEs in Computational Finance\",\"authors\":\"Yin Wang, Kun Hua, Jun Zhang\",\"doi\":\"10.1109/BCGIN.2011.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a new W-cycle multiscale multigrid method that can use the existing multilevel (different scale) grid hierarchy to approximate the sixth order solution of Poisson equation based on the fourth order discretization schemes. Richardson extrapolation procedure is used on the fine grid level in multigrid method. Numerical results are conducted to show the solution accuracy and the computational efficiency of our new method, compared to Wang-Zhang's sixth order multiscale multigrid method using V-cycle.\",\"PeriodicalId\":127523,\"journal\":{\"name\":\"2011 International Conference on Business Computing and Global Informatization\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Business Computing and Global Informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCGIN.2011.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Business Computing and Global Informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCGIN.2011.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的w循环多尺度多网格方法,该方法可以利用现有的多层(不同尺度)网格层次来近似泊松方程的六阶解,该方法基于四阶离散化方案。在多网格法中,在细网格层面采用Richardson外推法。通过与Wang-Zhang基于V-cycle的六阶多尺度多重网格方法的比较,验证了该方法的求解精度和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and High Accuracy Numerical Methods for Solving PDEs in Computational Finance
We develop a new W-cycle multiscale multigrid method that can use the existing multilevel (different scale) grid hierarchy to approximate the sixth order solution of Poisson equation based on the fourth order discretization schemes. Richardson extrapolation procedure is used on the fine grid level in multigrid method. Numerical results are conducted to show the solution accuracy and the computational efficiency of our new method, compared to Wang-Zhang's sixth order multiscale multigrid method using V-cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信