{"title":"视听语音识别的相关特征选择","authors":"Thomas Drugman, Mihai Gurban, J. Thiran","doi":"10.1109/MMSP.2007.4412847","DOIUrl":null,"url":null,"abstract":"We present a feature selection method based on information theoretic measures, targeted at multimodal signal processing, showing how we can quantitatively assess the relevance of features from different modalities. We are able to find the features with the highest amount of information relevant for the recognition task, and at the same having minimal redundancy. Our application is audio-visual speech recognition, and in particular selecting relevant visual features. Experimental results show that our method outperforms other feature selection algorithms from the literature by improving recognition accuracy even with a significantly reduced number of features.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Relevant Feature Selection for Audio-Visual Speech Recognition\",\"authors\":\"Thomas Drugman, Mihai Gurban, J. Thiran\",\"doi\":\"10.1109/MMSP.2007.4412847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a feature selection method based on information theoretic measures, targeted at multimodal signal processing, showing how we can quantitatively assess the relevance of features from different modalities. We are able to find the features with the highest amount of information relevant for the recognition task, and at the same having minimal redundancy. Our application is audio-visual speech recognition, and in particular selecting relevant visual features. Experimental results show that our method outperforms other feature selection algorithms from the literature by improving recognition accuracy even with a significantly reduced number of features.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relevant Feature Selection for Audio-Visual Speech Recognition
We present a feature selection method based on information theoretic measures, targeted at multimodal signal processing, showing how we can quantitatively assess the relevance of features from different modalities. We are able to find the features with the highest amount of information relevant for the recognition task, and at the same having minimal redundancy. Our application is audio-visual speech recognition, and in particular selecting relevant visual features. Experimental results show that our method outperforms other feature selection algorithms from the literature by improving recognition accuracy even with a significantly reduced number of features.