面向递归网络体系结构的自适应网络管理

J. Barron, Micheal Crotty, E. Elahi, R. Riggio, D. López, M. P. D. Leon
{"title":"面向递归网络体系结构的自适应网络管理","authors":"J. Barron, Micheal Crotty, E. Elahi, R. Riggio, D. López, M. P. D. Leon","doi":"10.1109/NOMS.2016.7502977","DOIUrl":null,"url":null,"abstract":"Traditionally, network management tasks manually performed by system administrators include monitoring alarms based on collected statistics across many heterogeneous systems, correlating these alarms to identify potential problems or changes to management policies and responding by performing system re-configurations to ensure optimal performance of network services. System administrators have a narrow focus of factors impacting network service provisioning and performance due to the heterogeneity and scale of generated underlying network events. However, self-adaption principles are conceptual approaches for autonomously managing such complex distributed systems. Network management systems that harness such principles can dynamically and autonomously optimise the operation of network services, responding quickly to changes in user requirements and underlying network conditions. In this paper, we present a novel self-adaptive network management framework that takes advantage of a recursive network architecture for a simpler and more comprehensive application of ontologies, semantic web rules and machine learning to automatically adjust network configuration parameters to provide more optimal QoS management of network services. We demonstrate the applicability of the approach using a content distribution network (CDN) operating over such a recursive network architecture.","PeriodicalId":344879,"journal":{"name":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Towards self-adaptive network management for a recursive network architecture\",\"authors\":\"J. Barron, Micheal Crotty, E. Elahi, R. Riggio, D. López, M. P. D. Leon\",\"doi\":\"10.1109/NOMS.2016.7502977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, network management tasks manually performed by system administrators include monitoring alarms based on collected statistics across many heterogeneous systems, correlating these alarms to identify potential problems or changes to management policies and responding by performing system re-configurations to ensure optimal performance of network services. System administrators have a narrow focus of factors impacting network service provisioning and performance due to the heterogeneity and scale of generated underlying network events. However, self-adaption principles are conceptual approaches for autonomously managing such complex distributed systems. Network management systems that harness such principles can dynamically and autonomously optimise the operation of network services, responding quickly to changes in user requirements and underlying network conditions. In this paper, we present a novel self-adaptive network management framework that takes advantage of a recursive network architecture for a simpler and more comprehensive application of ontologies, semantic web rules and machine learning to automatically adjust network configuration parameters to provide more optimal QoS management of network services. We demonstrate the applicability of the approach using a content distribution network (CDN) operating over such a recursive network architecture.\",\"PeriodicalId\":344879,\"journal\":{\"name\":\"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2016.7502977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2016.7502977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

传统上,由系统管理员手动执行的网络管理任务包括基于收集到的跨许多异构系统的统计数据来监视告警,将这些告警关联起来以识别潜在的问题或管理策略的更改,并通过执行系统重新配置来响应,以确保网络服务的最佳性能。由于生成的底层网络事件的异构性和规模,系统管理员只关注影响网络服务供应和性能的因素。然而,自适应原则是自主管理这种复杂分布式系统的概念方法。利用这些原则的网络管理系统可以动态和自主地优化网络服务的运行,快速响应用户需求和底层网络条件的变化。在本文中,我们提出了一种新的自适应网络管理框架,该框架利用递归网络架构更简单、更全面地应用本体、语义web规则和机器学习来自动调整网络配置参数,以提供更优的网络服务QoS管理。我们使用在这种递归网络架构上运行的内容分发网络(CDN)来演示该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards self-adaptive network management for a recursive network architecture
Traditionally, network management tasks manually performed by system administrators include monitoring alarms based on collected statistics across many heterogeneous systems, correlating these alarms to identify potential problems or changes to management policies and responding by performing system re-configurations to ensure optimal performance of network services. System administrators have a narrow focus of factors impacting network service provisioning and performance due to the heterogeneity and scale of generated underlying network events. However, self-adaption principles are conceptual approaches for autonomously managing such complex distributed systems. Network management systems that harness such principles can dynamically and autonomously optimise the operation of network services, responding quickly to changes in user requirements and underlying network conditions. In this paper, we present a novel self-adaptive network management framework that takes advantage of a recursive network architecture for a simpler and more comprehensive application of ontologies, semantic web rules and machine learning to automatically adjust network configuration parameters to provide more optimal QoS management of network services. We demonstrate the applicability of the approach using a content distribution network (CDN) operating over such a recursive network architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信