利用卷积神经网络识别德国交通标志

G. V. S. S. Santosh, G. C. Kumar, G. Sandeep, G. A. E. S. Kumar
{"title":"利用卷积神经网络识别德国交通标志","authors":"G. V. S. S. Santosh, G. C. Kumar, G. Sandeep, G. A. E. S. Kumar","doi":"10.1109/ICECA55336.2022.10009588","DOIUrl":null,"url":null,"abstract":"Traffic signs provide the necessary information and warn of possible dangers. Traffic sign recognition plays a crucial role in helping drivers understand signposts, obey traffic rules and develop automated driving systems. This research work has developed a convolutional neural network (CNN) model to classify the traffic signs displayed in the image into different categories, such as speed limits, prohibitions, left or right turns, child crossings, overtaking heavy vehicles, etc. The proposed system can recognize and classify 43 types of signs. The proposed model has achieved an accuracy of 98.81% on test data.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"German Traffic Sign Recognition Using Convolutional Neural Network\",\"authors\":\"G. V. S. S. Santosh, G. C. Kumar, G. Sandeep, G. A. E. S. Kumar\",\"doi\":\"10.1109/ICECA55336.2022.10009588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic signs provide the necessary information and warn of possible dangers. Traffic sign recognition plays a crucial role in helping drivers understand signposts, obey traffic rules and develop automated driving systems. This research work has developed a convolutional neural network (CNN) model to classify the traffic signs displayed in the image into different categories, such as speed limits, prohibitions, left or right turns, child crossings, overtaking heavy vehicles, etc. The proposed system can recognize and classify 43 types of signs. The proposed model has achieved an accuracy of 98.81% on test data.\",\"PeriodicalId\":356949,\"journal\":{\"name\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA55336.2022.10009588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交通标志提供必要的信息,并警告可能的危险。交通标志识别在帮助驾驶员理解路标、遵守交通规则和开发自动驾驶系统方面发挥着至关重要的作用。本研究工作开发了卷积神经网络(CNN)模型,将图像中显示的交通标志分类为不同的类别,如限速、禁止、左转或右转、儿童过街、超车等。该系统可以识别和分类43种类型的标志。该模型在测试数据上的准确率达到了98.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
German Traffic Sign Recognition Using Convolutional Neural Network
Traffic signs provide the necessary information and warn of possible dangers. Traffic sign recognition plays a crucial role in helping drivers understand signposts, obey traffic rules and develop automated driving systems. This research work has developed a convolutional neural network (CNN) model to classify the traffic signs displayed in the image into different categories, such as speed limits, prohibitions, left or right turns, child crossings, overtaking heavy vehicles, etc. The proposed system can recognize and classify 43 types of signs. The proposed model has achieved an accuracy of 98.81% on test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信