混合现实与合成知识的多相机人物跟踪

Quang Qui-Vinh Nguyen, H. Le, Truc Thi-Thanh Chau, Duc-Tuan Luu, Nhat Minh Chung, Synh Viet-Uyen Ha
{"title":"混合现实与合成知识的多相机人物跟踪","authors":"Quang Qui-Vinh Nguyen, H. Le, Truc Thi-Thanh Chau, Duc-Tuan Luu, Nhat Minh Chung, Synh Viet-Uyen Ha","doi":"10.1109/CVPRW59228.2023.00581","DOIUrl":null,"url":null,"abstract":"This paper presents a solution for Track 1 of the AI City Challenge 2023, which involves Multi-Camera People Tracking in indoor scenarios. The proposed framework comprises four modules: Vehicle detection, ReID feature extraction, single-camera multi-target tracking (SCMT), single-camera matching, and multi-camera matching. A significant contribution of our approach is the introduction of ID switch detection and ID switch splitting using the Gaussian mixture model, which efficiently addresses the problem of tracklets with ID switches. Furthermore, our system performs well in matching both synthetic and real data. The proposed R-matching algorithm performs exceptionally well in real scenarios despite being trained on synthetic data. Experimental results on the public test set of 2023 AI City Challenge Track 1 demonstrate the efficacy of the proposed approach, achieving an IDF1 of 94.17% and securing 2nd position on the leaderboard. Codes will be available at https://github.com/nguyenquivinhquang/Multi-camera-People-Tracking-With-Mixture-of-Realistic-and-Synthetic-Knowledge","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-camera People Tracking With Mixture of Realistic and Synthetic Knowledge\",\"authors\":\"Quang Qui-Vinh Nguyen, H. Le, Truc Thi-Thanh Chau, Duc-Tuan Luu, Nhat Minh Chung, Synh Viet-Uyen Ha\",\"doi\":\"10.1109/CVPRW59228.2023.00581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a solution for Track 1 of the AI City Challenge 2023, which involves Multi-Camera People Tracking in indoor scenarios. The proposed framework comprises four modules: Vehicle detection, ReID feature extraction, single-camera multi-target tracking (SCMT), single-camera matching, and multi-camera matching. A significant contribution of our approach is the introduction of ID switch detection and ID switch splitting using the Gaussian mixture model, which efficiently addresses the problem of tracklets with ID switches. Furthermore, our system performs well in matching both synthetic and real data. The proposed R-matching algorithm performs exceptionally well in real scenarios despite being trained on synthetic data. Experimental results on the public test set of 2023 AI City Challenge Track 1 demonstrate the efficacy of the proposed approach, achieving an IDF1 of 94.17% and securing 2nd position on the leaderboard. Codes will be available at https://github.com/nguyenquivinhquang/Multi-camera-People-Tracking-With-Mixture-of-Realistic-and-Synthetic-Knowledge\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了人工智能城市挑战赛2023轨道1的解决方案,该解决方案涉及室内场景中的多摄像头人员跟踪。该框架包括四个模块:车辆检测、ReID特征提取、单相机多目标跟踪(SCMT)、单相机匹配和多相机匹配。我们的方法的一个重要贡献是引入了ID开关检测和使用高斯混合模型的ID开关分裂,有效地解决了带有ID开关的轨道的问题。此外,该系统在合成数据和真实数据的匹配方面表现良好。尽管所提出的r匹配算法是在合成数据上训练的,但在实际场景中表现得非常好。在2023年AI城市挑战赛赛道1的公共测试集上的实验结果证明了该方法的有效性,实现了94.17%的IDF1,并在排行榜上获得了第二名的位置。代码可在https://github.com/nguyenquivinhquang/Multi-camera-People-Tracking-With-Mixture-of-Realistic-and-Synthetic-Knowledge上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-camera People Tracking With Mixture of Realistic and Synthetic Knowledge
This paper presents a solution for Track 1 of the AI City Challenge 2023, which involves Multi-Camera People Tracking in indoor scenarios. The proposed framework comprises four modules: Vehicle detection, ReID feature extraction, single-camera multi-target tracking (SCMT), single-camera matching, and multi-camera matching. A significant contribution of our approach is the introduction of ID switch detection and ID switch splitting using the Gaussian mixture model, which efficiently addresses the problem of tracklets with ID switches. Furthermore, our system performs well in matching both synthetic and real data. The proposed R-matching algorithm performs exceptionally well in real scenarios despite being trained on synthetic data. Experimental results on the public test set of 2023 AI City Challenge Track 1 demonstrate the efficacy of the proposed approach, achieving an IDF1 of 94.17% and securing 2nd position on the leaderboard. Codes will be available at https://github.com/nguyenquivinhquang/Multi-camera-People-Tracking-With-Mixture-of-Realistic-and-Synthetic-Knowledge
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信