燃烧等离子体实验真空容器螺栓连接试验程序

P. Hsueh, M.Z. Khan, J. Swanson, T. Feng, S. Dinkevich, J. Warren
{"title":"燃烧等离子体实验真空容器螺栓连接试验程序","authors":"P. Hsueh, M.Z. Khan, J. Swanson, T. Feng, S. Dinkevich, J. Warren","doi":"10.1109/FUSION.1991.218784","DOIUrl":null,"url":null,"abstract":"As presently designed, the Burning Plasma Experiment vacuum vessel will be segmentally fabricated and assembled by bolted joints in the field. Due to geometry constraints, most of the bolted joints have significant eccentricity, which causes the joint behavior to be sensitive to joint clamping forces. Experience indicates that, as a result of this eccentricity, the joint will tend to open at the side closest to the applied load, with the extent of the opening depending on the initial preload. Analytical models and a testing program were developed to investigate and predict the nonlinear behavior of the vacuum vessel bolted joint. The test results are comparable with the analytical solutions in general, showing about 15% less load capacity than the finite element analysis predicted because the test specimens contained certain manufacturing and fabrication tolerances. The bolted joint capacity can be predicted by the finite element analysis, provided that an appropriate factor of safety be applied to cover these tolerances. The imperfections of the flanges and spacer surfaces are sensitive to the bolted joint characteristics. The design tolerances for the surfaces should be carefully specified.<<ETX>>","PeriodicalId":318951,"journal":{"name":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Testing program for Burning Plasma Experiment vacuum vessel bolted joint\",\"authors\":\"P. Hsueh, M.Z. Khan, J. Swanson, T. Feng, S. Dinkevich, J. Warren\",\"doi\":\"10.1109/FUSION.1991.218784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As presently designed, the Burning Plasma Experiment vacuum vessel will be segmentally fabricated and assembled by bolted joints in the field. Due to geometry constraints, most of the bolted joints have significant eccentricity, which causes the joint behavior to be sensitive to joint clamping forces. Experience indicates that, as a result of this eccentricity, the joint will tend to open at the side closest to the applied load, with the extent of the opening depending on the initial preload. Analytical models and a testing program were developed to investigate and predict the nonlinear behavior of the vacuum vessel bolted joint. The test results are comparable with the analytical solutions in general, showing about 15% less load capacity than the finite element analysis predicted because the test specimens contained certain manufacturing and fabrication tolerances. The bolted joint capacity can be predicted by the finite element analysis, provided that an appropriate factor of safety be applied to cover these tolerances. The imperfections of the flanges and spacer surfaces are sensitive to the bolted joint characteristics. The design tolerances for the surfaces should be carefully specified.<<ETX>>\",\"PeriodicalId\":318951,\"journal\":{\"name\":\"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUSION.1991.218784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1991.218784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

根据目前的设计,燃烧等离子体实验真空容器将在现场分段制造和螺栓连接组装。由于几何结构的限制,大多数螺栓连接具有较大的偏心,导致连接行为对连接夹紧力敏感。经验表明,由于这种偏心,连接将倾向于在最靠近施加载荷的一侧打开,打开的程度取决于初始预载荷。为研究和预测真空容器螺栓连接的非线性行为,建立了分析模型和试验程序。试验结果与解析解大致相当,由于试样包含一定的制造和加工公差,因此显示出比有限元分析预测的承载能力低约15%。如果采用适当的安全系数来覆盖这些公差,则可以通过有限元分析来预测螺栓连接的能力。法兰和垫片表面的缺陷对螺栓连接特性非常敏感。表面的设计公差应仔细规定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing program for Burning Plasma Experiment vacuum vessel bolted joint
As presently designed, the Burning Plasma Experiment vacuum vessel will be segmentally fabricated and assembled by bolted joints in the field. Due to geometry constraints, most of the bolted joints have significant eccentricity, which causes the joint behavior to be sensitive to joint clamping forces. Experience indicates that, as a result of this eccentricity, the joint will tend to open at the side closest to the applied load, with the extent of the opening depending on the initial preload. Analytical models and a testing program were developed to investigate and predict the nonlinear behavior of the vacuum vessel bolted joint. The test results are comparable with the analytical solutions in general, showing about 15% less load capacity than the finite element analysis predicted because the test specimens contained certain manufacturing and fabrication tolerances. The bolted joint capacity can be predicted by the finite element analysis, provided that an appropriate factor of safety be applied to cover these tolerances. The imperfections of the flanges and spacer surfaces are sensitive to the bolted joint characteristics. The design tolerances for the surfaces should be carefully specified.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信