压缩阴影贴图的有向无环图编码

L. Scandolo, E. Eisemann
{"title":"压缩阴影贴图的有向无环图编码","authors":"L. Scandolo, E. Eisemann","doi":"10.2312/hpg.20211283","DOIUrl":null,"url":null,"abstract":"Detailed shadows in large-scale environments are challenging. Our approach enables efficient detailed shadow computations for static environments at a low memory cost. It builds upon compressed precomputed multiresolution hierarchies but uses a directed acyclic graph to encode its tree structure. Further, depth values are compressed and stored separately and we use a bit-plane encoding for the lower tree levels entries in order to further reduce memory requirements and increase locality. We achieve between 20% to 50% improved compression rates, while retaining high performance.","PeriodicalId":354787,"journal":{"name":"Proceedings of the Conference on High-Performance Graphics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Directed acyclic graph encoding for compressed shadow maps\",\"authors\":\"L. Scandolo, E. Eisemann\",\"doi\":\"10.2312/hpg.20211283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detailed shadows in large-scale environments are challenging. Our approach enables efficient detailed shadow computations for static environments at a low memory cost. It builds upon compressed precomputed multiresolution hierarchies but uses a directed acyclic graph to encode its tree structure. Further, depth values are compressed and stored separately and we use a bit-plane encoding for the lower tree levels entries in order to further reduce memory requirements and increase locality. We achieve between 20% to 50% improved compression rates, while retaining high performance.\",\"PeriodicalId\":354787,\"journal\":{\"name\":\"Proceedings of the Conference on High-Performance Graphics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on High-Performance Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/hpg.20211283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High-Performance Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/hpg.20211283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大规模环境中的细节阴影是具有挑战性的。我们的方法能够以低内存成本为静态环境提供高效的详细阴影计算。它建立在压缩的预先计算的多分辨率层次结构上,但使用有向无环图来编码其树结构。此外,深度值被单独压缩和存储,我们对较低树级别的条目使用位平面编码,以进一步减少内存需求并增加局域性。在保持高性能的同时,压缩率提高了20%到50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Directed acyclic graph encoding for compressed shadow maps
Detailed shadows in large-scale environments are challenging. Our approach enables efficient detailed shadow computations for static environments at a low memory cost. It builds upon compressed precomputed multiresolution hierarchies but uses a directed acyclic graph to encode its tree structure. Further, depth values are compressed and stored separately and we use a bit-plane encoding for the lower tree levels entries in order to further reduce memory requirements and increase locality. We achieve between 20% to 50% improved compression rates, while retaining high performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信