Misoo Kim, Youngkyoung Kim, Kicheol Kim, Eunseok Lee
{"title":"基于多目标优化的自动程序修复bug模板挖掘","authors":"Misoo Kim, Youngkyoung Kim, Kicheol Kim, Eunseok Lee","doi":"10.1145/3551349.3559554","DOIUrl":null,"url":null,"abstract":"Template-based automatic program repair (T-APR) techniques depend on the quality of bug-fixing templates. For such templates to be of sufficient quality for T-APR techniques to succeed, they must satisfy three criteria: applicability, fixability, and efficiency. Existing template mining approaches select templates based only on the first criteria, and are thus suboptimal in their performance. This study proposes a multi-objective optimization-based bug-fixing template mining method for T-APR in which we estimate template quality based on nine code abstraction tasks and three objective functions. Our method determines the optimal code abstraction strategy (i.e., the optimal combination of abstraction tasks) which maximizes the values of three objective functions and generates a final set of bug-fixing templates by clustering template candidates to which the optimal abstraction strategy is applied. Our preliminary experiment demonstrated that our optimized strategy can improve templates’ applicability and efficiency by 7% and 146% over the existing mining technique, respectively. We therefore conclude that the multi-objective optimization-based template mining technique effectively finds high-quality bug-fixing templates.","PeriodicalId":197939,"journal":{"name":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective Optimization-based Bug-fixing Template Mining for Automated Program Repair\",\"authors\":\"Misoo Kim, Youngkyoung Kim, Kicheol Kim, Eunseok Lee\",\"doi\":\"10.1145/3551349.3559554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Template-based automatic program repair (T-APR) techniques depend on the quality of bug-fixing templates. For such templates to be of sufficient quality for T-APR techniques to succeed, they must satisfy three criteria: applicability, fixability, and efficiency. Existing template mining approaches select templates based only on the first criteria, and are thus suboptimal in their performance. This study proposes a multi-objective optimization-based bug-fixing template mining method for T-APR in which we estimate template quality based on nine code abstraction tasks and three objective functions. Our method determines the optimal code abstraction strategy (i.e., the optimal combination of abstraction tasks) which maximizes the values of three objective functions and generates a final set of bug-fixing templates by clustering template candidates to which the optimal abstraction strategy is applied. Our preliminary experiment demonstrated that our optimized strategy can improve templates’ applicability and efficiency by 7% and 146% over the existing mining technique, respectively. We therefore conclude that the multi-objective optimization-based template mining technique effectively finds high-quality bug-fixing templates.\",\"PeriodicalId\":197939,\"journal\":{\"name\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551349.3559554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551349.3559554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-objective Optimization-based Bug-fixing Template Mining for Automated Program Repair
Template-based automatic program repair (T-APR) techniques depend on the quality of bug-fixing templates. For such templates to be of sufficient quality for T-APR techniques to succeed, they must satisfy three criteria: applicability, fixability, and efficiency. Existing template mining approaches select templates based only on the first criteria, and are thus suboptimal in their performance. This study proposes a multi-objective optimization-based bug-fixing template mining method for T-APR in which we estimate template quality based on nine code abstraction tasks and three objective functions. Our method determines the optimal code abstraction strategy (i.e., the optimal combination of abstraction tasks) which maximizes the values of three objective functions and generates a final set of bug-fixing templates by clustering template candidates to which the optimal abstraction strategy is applied. Our preliminary experiment demonstrated that our optimized strategy can improve templates’ applicability and efficiency by 7% and 146% over the existing mining technique, respectively. We therefore conclude that the multi-objective optimization-based template mining technique effectively finds high-quality bug-fixing templates.