使用水平集方法的自动肿瘤分割

S. Lebonvallet, S. Khatchadourian, S. Ruan
{"title":"使用水平集方法的自动肿瘤分割","authors":"S. Lebonvallet, S. Khatchadourian, S. Ruan","doi":"10.5220/0002068301280133","DOIUrl":null,"url":null,"abstract":"In the framework of detection, diagnostic and treatment planning of the tumours, the Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) have become the most efficient techniques for body and brain examination. Radiologists take usually several hours to segment manually the region of interest (ROI) on images to obtain some information about patient pathology. It is very time consuming. The aim of our study is to propose an automatic solution to this problem to help the radiologist’s work. This paper presents an approach of tumour segmentation based on a fast level set method. The results obtained by the proposed method dealing with both PET and MRI images are encouraging.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated tumor segmentation using level set methods\",\"authors\":\"S. Lebonvallet, S. Khatchadourian, S. Ruan\",\"doi\":\"10.5220/0002068301280133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of detection, diagnostic and treatment planning of the tumours, the Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) have become the most efficient techniques for body and brain examination. Radiologists take usually several hours to segment manually the region of interest (ROI) on images to obtain some information about patient pathology. It is very time consuming. The aim of our study is to propose an automatic solution to this problem to help the radiologist’s work. This paper presents an approach of tumour segmentation based on a fast level set method. The results obtained by the proposed method dealing with both PET and MRI images are encouraging.\",\"PeriodicalId\":411140,\"journal\":{\"name\":\"International Conference on Computer Vision Theory and Applications\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Vision Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0002068301280133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002068301280133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在肿瘤的检测、诊断和治疗计划的框架下,正电子发射断层扫描(PET)和磁共振成像(MRI)已成为最有效的身体和大脑检查技术。放射科医生通常需要几个小时的时间来手动分割图像上的感兴趣区域(ROI),以获得有关患者病理的一些信息。这是非常耗时的。我们研究的目的是提出一个自动解决这个问题,以帮助放射科医生的工作。提出了一种基于快速水平集的肿瘤分割方法。所提出的方法处理PET和MRI图像的结果是令人鼓舞的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated tumor segmentation using level set methods
In the framework of detection, diagnostic and treatment planning of the tumours, the Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) have become the most efficient techniques for body and brain examination. Radiologists take usually several hours to segment manually the region of interest (ROI) on images to obtain some information about patient pathology. It is very time consuming. The aim of our study is to propose an automatic solution to this problem to help the radiologist’s work. This paper presents an approach of tumour segmentation based on a fast level set method. The results obtained by the proposed method dealing with both PET and MRI images are encouraging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信