{"title":"MoM在计算电磁学中的应用新进展","authors":"F. Bogdanov, R. Jobava","doi":"10.1109/MMET.2018.8460329","DOIUrl":null,"url":null,"abstract":"This paper is aimed to review some recent achievements in the Method of Moments (MoM) applications to computational electromagnetics related to new formulations for overcoming the low frequency (fine mesh) instability problems, modeling of printed and impedance structures, multiport networks and waveguide ports, as well as their hybridizations with mixed conducting and dielectric objects. The validation of the developed approaches and their application to practical EM/ EMI/ EMC problems will be demonstrated.","PeriodicalId":343933,"journal":{"name":"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Achievements in MoM Applications to Computational Electromagnetics\",\"authors\":\"F. Bogdanov, R. Jobava\",\"doi\":\"10.1109/MMET.2018.8460329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is aimed to review some recent achievements in the Method of Moments (MoM) applications to computational electromagnetics related to new formulations for overcoming the low frequency (fine mesh) instability problems, modeling of printed and impedance structures, multiport networks and waveguide ports, as well as their hybridizations with mixed conducting and dielectric objects. The validation of the developed approaches and their application to practical EM/ EMI/ EMC problems will be demonstrated.\",\"PeriodicalId\":343933,\"journal\":{\"name\":\"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2018.8460329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2018.8460329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Achievements in MoM Applications to Computational Electromagnetics
This paper is aimed to review some recent achievements in the Method of Moments (MoM) applications to computational electromagnetics related to new formulations for overcoming the low frequency (fine mesh) instability problems, modeling of printed and impedance structures, multiport networks and waveguide ports, as well as their hybridizations with mixed conducting and dielectric objects. The validation of the developed approaches and their application to practical EM/ EMI/ EMC problems will be demonstrated.