时间序列模型比较

Sahil Puri
{"title":"时间序列模型比较","authors":"Sahil Puri","doi":"10.2139/ssrn.3398018","DOIUrl":null,"url":null,"abstract":"As practitioners, we are not aware of the models that construct the datasets we study. We often rely on intuition to determine which model to choose. This white-paper takes a look at a penitential pitfall: What happens when we use a different model from the actual model generation process?","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series Model Comparisons\",\"authors\":\"Sahil Puri\",\"doi\":\"10.2139/ssrn.3398018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As practitioners, we are not aware of the models that construct the datasets we study. We often rely on intuition to determine which model to choose. This white-paper takes a look at a penitential pitfall: What happens when we use a different model from the actual model generation process?\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3398018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3398018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为实践者,我们不知道构建我们研究的数据集的模型。我们经常依靠直觉来决定选择哪种模型。本白皮书探讨了一个后悔的陷阱:当我们使用与实际模型生成过程不同的模型时会发生什么?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Series Model Comparisons
As practitioners, we are not aware of the models that construct the datasets we study. We often rely on intuition to determine which model to choose. This white-paper takes a look at a penitential pitfall: What happens when we use a different model from the actual model generation process?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信