Shabnam Saadat, M. Pickering, D. Perriman, J. Scarvell, Paul N. Smith
{"title":"快速鲁棒的三维膝关节运动学多模态图像配准","authors":"Shabnam Saadat, M. Pickering, D. Perriman, J. Scarvell, Paul N. Smith","doi":"10.1109/DICTA.2017.8227434","DOIUrl":null,"url":null,"abstract":"The process of spatially aligning two or more images acquired from different devices or imaging protocols is known as multi-modal image registration. As the similarity measure used is one of the most significant aspects of this process, certain measures have been proposed to enhance multi-modal image registration. However, the currently available measures are either not sufficiently accurate or are very computationally expensive. In this paper, a new hybrid multimodal registration approach is proposed. The new approach combines a fast measure, based on matching image edges, with a robust, but slow measure, which uses the joint probability distribution of the two images to be registered. Our experimental results reveal that using this hybrid approach provides a performance equivalent to the previously best measures but with a significantly reduced computational time.","PeriodicalId":194175,"journal":{"name":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fast and Robust Multi-Modal Image Registration for 3D Knee Kinematics\",\"authors\":\"Shabnam Saadat, M. Pickering, D. Perriman, J. Scarvell, Paul N. Smith\",\"doi\":\"10.1109/DICTA.2017.8227434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of spatially aligning two or more images acquired from different devices or imaging protocols is known as multi-modal image registration. As the similarity measure used is one of the most significant aspects of this process, certain measures have been proposed to enhance multi-modal image registration. However, the currently available measures are either not sufficiently accurate or are very computationally expensive. In this paper, a new hybrid multimodal registration approach is proposed. The new approach combines a fast measure, based on matching image edges, with a robust, but slow measure, which uses the joint probability distribution of the two images to be registered. Our experimental results reveal that using this hybrid approach provides a performance equivalent to the previously best measures but with a significantly reduced computational time.\",\"PeriodicalId\":194175,\"journal\":{\"name\":\"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2017.8227434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2017.8227434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast and Robust Multi-Modal Image Registration for 3D Knee Kinematics
The process of spatially aligning two or more images acquired from different devices or imaging protocols is known as multi-modal image registration. As the similarity measure used is one of the most significant aspects of this process, certain measures have been proposed to enhance multi-modal image registration. However, the currently available measures are either not sufficiently accurate or are very computationally expensive. In this paper, a new hybrid multimodal registration approach is proposed. The new approach combines a fast measure, based on matching image edges, with a robust, but slow measure, which uses the joint probability distribution of the two images to be registered. Our experimental results reveal that using this hybrid approach provides a performance equivalent to the previously best measures but with a significantly reduced computational time.