关系数据库的动态不变量检测

Jake Cobb, James A. Jones, G. M. Kapfhammer, M. J. Harrold
{"title":"关系数据库的动态不变量检测","authors":"Jake Cobb, James A. Jones, G. M. Kapfhammer, M. J. Harrold","doi":"10.1145/2002951.2002955","DOIUrl":null,"url":null,"abstract":"Despite the many automated techniques that benefit from dynamic invariant detection, to date, none are able to capture and detect dynamic invariants at the interface of a program and its databases. This paper presents a dynamic invariant detection method for relational databases and for programs that use relational databases and an implementation of the approach that leverages the Daikon dynamic-invariant engine. The method defines a mapping between relational database elements and Daikon's notion of program points and variable observations, thus enabling row-level and column-level invariant detection. The paper also presents the results of two empirical evaluations on four fixed data sets and three subject programs. The first study shows that dynamically detecting and inferring invariants in a relational database is feasible and 55% of the invariants produced for each subject are meaningful. The second study reveals that all of these meaningful invariants are schema-enforceable using standards-compliant databases and many can be checked by databases with only limited schema constructs.","PeriodicalId":315305,"journal":{"name":"International Workshop on Dynamic Analysis","volume":"280 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Dynamic invariant detection for relational databases\",\"authors\":\"Jake Cobb, James A. Jones, G. M. Kapfhammer, M. J. Harrold\",\"doi\":\"10.1145/2002951.2002955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the many automated techniques that benefit from dynamic invariant detection, to date, none are able to capture and detect dynamic invariants at the interface of a program and its databases. This paper presents a dynamic invariant detection method for relational databases and for programs that use relational databases and an implementation of the approach that leverages the Daikon dynamic-invariant engine. The method defines a mapping between relational database elements and Daikon's notion of program points and variable observations, thus enabling row-level and column-level invariant detection. The paper also presents the results of two empirical evaluations on four fixed data sets and three subject programs. The first study shows that dynamically detecting and inferring invariants in a relational database is feasible and 55% of the invariants produced for each subject are meaningful. The second study reveals that all of these meaningful invariants are schema-enforceable using standards-compliant databases and many can be checked by databases with only limited schema constructs.\",\"PeriodicalId\":315305,\"journal\":{\"name\":\"International Workshop on Dynamic Analysis\",\"volume\":\"280 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Dynamic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2002951.2002955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Dynamic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2002951.2002955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

尽管许多自动化技术受益于动态不变量检测,但迄今为止,没有一种技术能够捕获和检测程序及其数据库接口上的动态不变量。本文提出了一种用于关系数据库和使用关系数据库的程序的动态不变量检测方法,以及利用Daikon动态不变量引擎的方法的实现。该方法定义关系数据库元素与Daikon的程序点和变量观察概念之间的映射,从而支持行级和列级不变检测。本文还介绍了四个固定数据集和三个主题程序的两个实证评估结果。第一项研究表明,动态检测和推断关系数据库中的不变量是可行的,并且为每个主题产生的不变量中有55%是有意义的。第二项研究表明,所有这些有意义的不变量都可以使用符合标准的数据库来执行模式,并且许多不变量可以由只有有限模式结构的数据库来检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic invariant detection for relational databases
Despite the many automated techniques that benefit from dynamic invariant detection, to date, none are able to capture and detect dynamic invariants at the interface of a program and its databases. This paper presents a dynamic invariant detection method for relational databases and for programs that use relational databases and an implementation of the approach that leverages the Daikon dynamic-invariant engine. The method defines a mapping between relational database elements and Daikon's notion of program points and variable observations, thus enabling row-level and column-level invariant detection. The paper also presents the results of two empirical evaluations on four fixed data sets and three subject programs. The first study shows that dynamically detecting and inferring invariants in a relational database is feasible and 55% of the invariants produced for each subject are meaningful. The second study reveals that all of these meaningful invariants are schema-enforceable using standards-compliant databases and many can be checked by databases with only limited schema constructs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信