网格聚类的迁移DNA计算技术

Xiyu Liu, Hao Tang
{"title":"网格聚类的迁移DNA计算技术","authors":"Xiyu Liu, Hao Tang","doi":"10.1109/JCPC.2009.5420181","DOIUrl":null,"url":null,"abstract":"Spatial clustering is an important cluster problem with basic computing model by traditional von Neumann's architecture. Meanwhile, the possibility of using DNA as a computing technique arouses wide interests in recent years with huge built-in parallel computing nature and ability to solve NP complete problems. The purpose of this paper is to integrate these two techniques. We propose a migrating DNA computing model with built-in DNA computing engine to cluster analysis. This new technique will apply for large scale, high parallel clustering problems potentially.","PeriodicalId":284323,"journal":{"name":"2009 Joint Conferences on Pervasive Computing (JCPC)","volume":"250 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A migrating DNA computing technique for grid clustering\",\"authors\":\"Xiyu Liu, Hao Tang\",\"doi\":\"10.1109/JCPC.2009.5420181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial clustering is an important cluster problem with basic computing model by traditional von Neumann's architecture. Meanwhile, the possibility of using DNA as a computing technique arouses wide interests in recent years with huge built-in parallel computing nature and ability to solve NP complete problems. The purpose of this paper is to integrate these two techniques. We propose a migrating DNA computing model with built-in DNA computing engine to cluster analysis. This new technique will apply for large scale, high parallel clustering problems potentially.\",\"PeriodicalId\":284323,\"journal\":{\"name\":\"2009 Joint Conferences on Pervasive Computing (JCPC)\",\"volume\":\"250 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Joint Conferences on Pervasive Computing (JCPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCPC.2009.5420181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Joint Conferences on Pervasive Computing (JCPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCPC.2009.5420181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

空间聚类是一个重要的聚类问题,具有传统冯·诺依曼体系结构的基本计算模型。同时,利用DNA作为计算技术的可能性近年来引起了广泛的兴趣,因为它具有巨大的内置并行计算性质和解决NP完全问题的能力。本文的目的是将这两种技术结合起来。我们提出了一个内置DNA计算引擎的迁移DNA计算模型来进行聚类分析。这种新技术有可能应用于大规模、高并行的聚类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A migrating DNA computing technique for grid clustering
Spatial clustering is an important cluster problem with basic computing model by traditional von Neumann's architecture. Meanwhile, the possibility of using DNA as a computing technique arouses wide interests in recent years with huge built-in parallel computing nature and ability to solve NP complete problems. The purpose of this paper is to integrate these two techniques. We propose a migrating DNA computing model with built-in DNA computing engine to cluster analysis. This new technique will apply for large scale, high parallel clustering problems potentially.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信