Arnaud Carayol, M. Hague, A. Meyer, C. Ong, O. Serre
{"title":"高阶下推博弈的获胜区域","authors":"Arnaud Carayol, M. Hague, A. Meyer, C. Ong, O. Serre","doi":"10.1109/LICS.2008.41","DOIUrl":null,"url":null,"abstract":"In this paper we consider parity games defined by higher-order pushdown automata. These automata generalise pushdown automata by the use of higher-order stacks, which are nested \"stack of stacks\" structures. Representing higher-order stacks as well-bracketed words in the usual way, we show that the winning regions of these games are regular sets of words. Moreover a finite automaton recognising this region can be effectively computed. A novelty of our work are abstract pushdown processes which can be seen as (ordinary) pushdown automata but with an infinite stack alphabet. We use the device to give a uniform presentation of our results.From our main result on winning regions of parity games we derive a solution to the Modal Mu-Calculus Global Model-Checking Problem for higher-order pushdown graphs as well as for ranked trees generated by higher-order safe recursion schemes.","PeriodicalId":298300,"journal":{"name":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Winning Regions of Higher-Order Pushdown Games\",\"authors\":\"Arnaud Carayol, M. Hague, A. Meyer, C. Ong, O. Serre\",\"doi\":\"10.1109/LICS.2008.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider parity games defined by higher-order pushdown automata. These automata generalise pushdown automata by the use of higher-order stacks, which are nested \\\"stack of stacks\\\" structures. Representing higher-order stacks as well-bracketed words in the usual way, we show that the winning regions of these games are regular sets of words. Moreover a finite automaton recognising this region can be effectively computed. A novelty of our work are abstract pushdown processes which can be seen as (ordinary) pushdown automata but with an infinite stack alphabet. We use the device to give a uniform presentation of our results.From our main result on winning regions of parity games we derive a solution to the Modal Mu-Calculus Global Model-Checking Problem for higher-order pushdown graphs as well as for ranked trees generated by higher-order safe recursion schemes.\",\"PeriodicalId\":298300,\"journal\":{\"name\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2008.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2008.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we consider parity games defined by higher-order pushdown automata. These automata generalise pushdown automata by the use of higher-order stacks, which are nested "stack of stacks" structures. Representing higher-order stacks as well-bracketed words in the usual way, we show that the winning regions of these games are regular sets of words. Moreover a finite automaton recognising this region can be effectively computed. A novelty of our work are abstract pushdown processes which can be seen as (ordinary) pushdown automata but with an infinite stack alphabet. We use the device to give a uniform presentation of our results.From our main result on winning regions of parity games we derive a solution to the Modal Mu-Calculus Global Model-Checking Problem for higher-order pushdown graphs as well as for ranked trees generated by higher-order safe recursion schemes.