AFFDEX 2.0:一个实时面部表情分析工具包

M. Bishay, Kenneth Preston, Matthew Strafuss, Graham Page, Jay Turcot, Mohammad Mavadati
{"title":"AFFDEX 2.0:一个实时面部表情分析工具包","authors":"M. Bishay, Kenneth Preston, Matthew Strafuss, Graham Page, Jay Turcot, Mohammad Mavadati","doi":"10.1109/FG57933.2023.10042673","DOIUrl":null,"url":null,"abstract":"In this paper we introduce AFFDEX 2.0 – a toolkit for analyzing facial expressions in the wild, that is, it is intended for users aiming to; a) estimate the 3D head pose, b) detect facial Action Units (AUs), c) recognize basic emotions and 2 new emotional states (sentimentality and confusion), and d) detect high-level expressive metrics like blink and attention. AFFDEX 2.0 models are mainly based on Deep Learning, and are trained using a large-scale naturalistic dataset consisting of thousands of participants from different demographic groups. AFFDEX 2.0 is an enhanced version of our previous toolkit [36], that is capable of tracking faces at challenging conditions, detecting more accurately facial expressions, and recognizing new emotional states (sentimentality and confusion). AFFDEX 2.0 outperforms the state-of-the-art methods in AU detection and emotion recognition. AFFDEX 2.0 can process multiple faces in real time, and is working across the Windows and Linux platforms.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"AFFDEX 2.0: A Real-Time Facial Expression Analysis Toolkit\",\"authors\":\"M. Bishay, Kenneth Preston, Matthew Strafuss, Graham Page, Jay Turcot, Mohammad Mavadati\",\"doi\":\"10.1109/FG57933.2023.10042673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce AFFDEX 2.0 – a toolkit for analyzing facial expressions in the wild, that is, it is intended for users aiming to; a) estimate the 3D head pose, b) detect facial Action Units (AUs), c) recognize basic emotions and 2 new emotional states (sentimentality and confusion), and d) detect high-level expressive metrics like blink and attention. AFFDEX 2.0 models are mainly based on Deep Learning, and are trained using a large-scale naturalistic dataset consisting of thousands of participants from different demographic groups. AFFDEX 2.0 is an enhanced version of our previous toolkit [36], that is capable of tracking faces at challenging conditions, detecting more accurately facial expressions, and recognizing new emotional states (sentimentality and confusion). AFFDEX 2.0 outperforms the state-of-the-art methods in AU detection and emotion recognition. AFFDEX 2.0 can process multiple faces in real time, and is working across the Windows and Linux platforms.\",\"PeriodicalId\":318766,\"journal\":{\"name\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FG57933.2023.10042673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们介绍了AFFDEX 2.0——一个用于分析野外面部表情的工具包,也就是说,它旨在为目标用户;a)估计3D头部姿势,b)检测面部动作单位(au), c)识别基本情绪和2种新的情绪状态(多愁善感和困惑),d)检测眨眼和注意力等高级表达指标。AFFDEX 2.0模型主要基于深度学习,并使用由来自不同人口群体的数千名参与者组成的大规模自然数据集进行训练。AFFDEX 2.0是我们之前工具包的增强版本[36],它能够在具有挑战性的条件下跟踪面部,更准确地检测面部表情,并识别新的情绪状态(多愁善感和困惑)。AFFDEX 2.0在AU检测和情感识别方面优于最先进的方法。AFFDEX 2.0可以实时处理多个人脸,并且可以在Windows和Linux平台上工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AFFDEX 2.0: A Real-Time Facial Expression Analysis Toolkit
In this paper we introduce AFFDEX 2.0 – a toolkit for analyzing facial expressions in the wild, that is, it is intended for users aiming to; a) estimate the 3D head pose, b) detect facial Action Units (AUs), c) recognize basic emotions and 2 new emotional states (sentimentality and confusion), and d) detect high-level expressive metrics like blink and attention. AFFDEX 2.0 models are mainly based on Deep Learning, and are trained using a large-scale naturalistic dataset consisting of thousands of participants from different demographic groups. AFFDEX 2.0 is an enhanced version of our previous toolkit [36], that is capable of tracking faces at challenging conditions, detecting more accurately facial expressions, and recognizing new emotional states (sentimentality and confusion). AFFDEX 2.0 outperforms the state-of-the-art methods in AU detection and emotion recognition. AFFDEX 2.0 can process multiple faces in real time, and is working across the Windows and Linux platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信