Chuang Lu, A. Ba, Yao-Hong Liu, Xiaoyang Wang, Christian Bachmann, K. Philips
{"title":"17.4在可穿戴/植入式应用中,使用电子天平进行单步片上可调谐匹配的亚毫瓦天线阻抗检测","authors":"Chuang Lu, A. Ba, Yao-Hong Liu, Xiaoyang Wang, Christian Bachmann, K. Philips","doi":"10.1109/ISSCC.2017.7870379","DOIUrl":null,"url":null,"abstract":"Wearable/implantable devices, e.g., heart-rate-monitor straps and implanted wireless sensors, need to be ultra-low-power (ULP), compact, and also robust against the proximity effect, which can significantly degrade the antenna and front-end performance and hence battery lifetime. A fully integrated adaptive front-end with a tunable matching network (TMN) using low-power and fast impedance detection is highly desirable for robust and efficient operation.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"17.4 A sub-mW antenna-impedance detection using electrical balance for single-step on-chip tunable matching in wearable/implantable applications\",\"authors\":\"Chuang Lu, A. Ba, Yao-Hong Liu, Xiaoyang Wang, Christian Bachmann, K. Philips\",\"doi\":\"10.1109/ISSCC.2017.7870379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable/implantable devices, e.g., heart-rate-monitor straps and implanted wireless sensors, need to be ultra-low-power (ULP), compact, and also robust against the proximity effect, which can significantly degrade the antenna and front-end performance and hence battery lifetime. A fully integrated adaptive front-end with a tunable matching network (TMN) using low-power and fast impedance detection is highly desirable for robust and efficient operation.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
17.4 A sub-mW antenna-impedance detection using electrical balance for single-step on-chip tunable matching in wearable/implantable applications
Wearable/implantable devices, e.g., heart-rate-monitor straps and implanted wireless sensors, need to be ultra-low-power (ULP), compact, and also robust against the proximity effect, which can significantly degrade the antenna and front-end performance and hence battery lifetime. A fully integrated adaptive front-end with a tunable matching network (TMN) using low-power and fast impedance detection is highly desirable for robust and efficient operation.