基于机器学习模型的文本文档信息检索性能评价

Subhasish Chowdhury, Suresh Kumar
{"title":"基于机器学习模型的文本文档信息检索性能评价","authors":"Subhasish Chowdhury, Suresh Kumar","doi":"10.1109/ICDT57929.2023.10150858","DOIUrl":null,"url":null,"abstract":"Text mining is thought to have a high commercial potential due to the significant amounts of unstructured text data produced on the Internet. The practice of obtaining previously undiscovered, comprehensible, potentially useful patterns or knowledge from a corpus of text data is known as text mining. In this study, we attempt to extract the structured information from the text and then use various machine-learning models to categorize the data. We then look for the model that provides the highest level of classification accuracy.","PeriodicalId":266681,"journal":{"name":"2023 International Conference on Disruptive Technologies (ICDT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Text Document Using Machine Learning Models for Information Retrieval\",\"authors\":\"Subhasish Chowdhury, Suresh Kumar\",\"doi\":\"10.1109/ICDT57929.2023.10150858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text mining is thought to have a high commercial potential due to the significant amounts of unstructured text data produced on the Internet. The practice of obtaining previously undiscovered, comprehensible, potentially useful patterns or knowledge from a corpus of text data is known as text mining. In this study, we attempt to extract the structured information from the text and then use various machine-learning models to categorize the data. We then look for the model that provides the highest level of classification accuracy.\",\"PeriodicalId\":266681,\"journal\":{\"name\":\"2023 International Conference on Disruptive Technologies (ICDT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Disruptive Technologies (ICDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDT57929.2023.10150858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Disruptive Technologies (ICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDT57929.2023.10150858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于Internet上产生了大量的非结构化文本数据,文本挖掘被认为具有很高的商业潜力。从文本数据语料库中获取以前未发现的、可理解的、可能有用的模式或知识的实践称为文本挖掘。在本研究中,我们尝试从文本中提取结构化信息,然后使用各种机器学习模型对数据进行分类。然后,我们寻找提供最高级别分类精度的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of Text Document Using Machine Learning Models for Information Retrieval
Text mining is thought to have a high commercial potential due to the significant amounts of unstructured text data produced on the Internet. The practice of obtaining previously undiscovered, comprehensible, potentially useful patterns or knowledge from a corpus of text data is known as text mining. In this study, we attempt to extract the structured information from the text and then use various machine-learning models to categorize the data. We then look for the model that provides the highest level of classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信