下一代可再生能源预测的数据科学- Smart4RES项目的重点结果

G. Kariniotakis, S. Camal, F. Sossan, B. Nouri, J. Lezaca, M. Lange, B. Alonzo, Q. Libois, P. Pinson, R. Bessa, C. Gonçalves
{"title":"下一代可再生能源预测的数据科学- Smart4RES项目的重点结果","authors":"G. Kariniotakis, S. Camal, F. Sossan, B. Nouri, J. Lezaca, M. Lange, B. Alonzo, Q. Libois, P. Pinson, R. Bessa, C. Gonçalves","doi":"10.1049/icp.2021.2499","DOIUrl":null,"url":null,"abstract":"—Smart4RES is a European Horizon2020 project de-veloping next generation solutions for renewable energy forecast- ing. This paper presents highlight results obtained during the first year of the project. Data science is used throughout the proposed solutions in order to process the large amount of heterogeneous data available to forecasters, and derive model-free approaches of forecasting and decision-aid tasks. This paper presents a series of solutions addressing relevant for Photovoltaics (PV) and storage applications. High-resolution Numerical Weather Predictions and regional solar irradiance forecasting provide detailed information on local weather conditions and their variability. PV power forecasting benefits from such new data sources, but also the pro- posed collaborative data exchange. Finally, data-driven methods simplify decision-making for trading in short-term markets and for grid management.","PeriodicalId":186086,"journal":{"name":"11th Solar & Storage Power System Integration Workshop (SIW 2021)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Science for Next Generation Renewable Energy Forecasting - Highlight Results from the Smart4RES Project\",\"authors\":\"G. Kariniotakis, S. Camal, F. Sossan, B. Nouri, J. Lezaca, M. Lange, B. Alonzo, Q. Libois, P. Pinson, R. Bessa, C. Gonçalves\",\"doi\":\"10.1049/icp.2021.2499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Smart4RES is a European Horizon2020 project de-veloping next generation solutions for renewable energy forecast- ing. This paper presents highlight results obtained during the first year of the project. Data science is used throughout the proposed solutions in order to process the large amount of heterogeneous data available to forecasters, and derive model-free approaches of forecasting and decision-aid tasks. This paper presents a series of solutions addressing relevant for Photovoltaics (PV) and storage applications. High-resolution Numerical Weather Predictions and regional solar irradiance forecasting provide detailed information on local weather conditions and their variability. PV power forecasting benefits from such new data sources, but also the pro- posed collaborative data exchange. Finally, data-driven methods simplify decision-making for trading in short-term markets and for grid management.\",\"PeriodicalId\":186086,\"journal\":{\"name\":\"11th Solar & Storage Power System Integration Workshop (SIW 2021)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Solar & Storage Power System Integration Workshop (SIW 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.2499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Solar & Storage Power System Integration Workshop (SIW 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.2499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

smart4res是欧洲地平线2020的一个项目,旨在开发下一代可再生能源预测解决方案。本文介绍了该项目第一年取得的突出成果。数据科学在整个建议的解决方案中被使用,以处理预测者可用的大量异构数据,并派生出预测和决策辅助任务的无模型方法。本文提出了一系列解决光伏(PV)和存储应用相关的解决方案。高分辨率数值天气预报和区域太阳辐照度预报提供有关当地天气状况及其变化的详细资料。光伏发电预测受益于这些新的数据来源,同时也受益于所提出的协同数据交换。最后,数据驱动的方法简化了短期市场交易和网格管理的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Science for Next Generation Renewable Energy Forecasting - Highlight Results from the Smart4RES Project
—Smart4RES is a European Horizon2020 project de-veloping next generation solutions for renewable energy forecast- ing. This paper presents highlight results obtained during the first year of the project. Data science is used throughout the proposed solutions in order to process the large amount of heterogeneous data available to forecasters, and derive model-free approaches of forecasting and decision-aid tasks. This paper presents a series of solutions addressing relevant for Photovoltaics (PV) and storage applications. High-resolution Numerical Weather Predictions and regional solar irradiance forecasting provide detailed information on local weather conditions and their variability. PV power forecasting benefits from such new data sources, but also the pro- posed collaborative data exchange. Finally, data-driven methods simplify decision-making for trading in short-term markets and for grid management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信