基于包含应变效应的原子量子输运模拟,对Lg=13 nm的Si、InAs、GaAs和Ge纳米线n-和pmosfet的CMOS性能进行基准测试

Raseong Kim, U. Avci, I. Young
{"title":"基于包含应变效应的原子量子输运模拟,对Lg=13 nm的Si、InAs、GaAs和Ge纳米线n-和pmosfet的CMOS性能进行基准测试","authors":"Raseong Kim, U. Avci, I. Young","doi":"10.1109/IEDM.2015.7409824","DOIUrl":null,"url":null,"abstract":"As MOSFET scaling continues [1], new n- and p-channel materials are being actively explored to deliver performance targets better than Si. In this paper, we present CMOS performance benchmarking results for Si, InAs, GaAs, and Ge nanowire (NW) n- and pMOSFETs with LG=13 nm (ITRS node of year 2018 [1-3]) based on atomistic quantum transport simulation [4] and including strain effects [5]. Uniaxial [6] tensile/compressive strain mostly increases nMOS/pMOS drive current and vice versa, but results may be different for low power (LP) operation because strain may also affect the tunneling leakage current. We also discuss the threshold voltage (Vth) sensitivity to strain, which may have an impact on the device variation. Finally, we compare current (I), capacitance (C), and energy (CV2) vs. delay (CV/I) trade-off (for gate or interconnect loading) across different n-channel (Si, InAs, GaAs, Ge) and p-channel (Si, Ge) materials considering extrinsic parasitic components (RSD, Cfringe) for different supply voltages (VDD's). We project that Ge CMOS (using <;110> NWs [7]) with source/drain (S/D) doping density (Nsd) optimized [8] depending on the operating condition (high performance (HP) or LP) may deliver the best drive current and CV2 vs. CV/I while it would also benefit from the homogeneous material integration. For low capacitance (low power consumption), III-V-Ge hybrid CMOS is most advantageous.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"CMOS performance benchmarking of Si, InAs, GaAs, and Ge nanowire n- and pMOSFETs with Lg=13 nm based on atomistic quantum transport simulation including strain effects\",\"authors\":\"Raseong Kim, U. Avci, I. Young\",\"doi\":\"10.1109/IEDM.2015.7409824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As MOSFET scaling continues [1], new n- and p-channel materials are being actively explored to deliver performance targets better than Si. In this paper, we present CMOS performance benchmarking results for Si, InAs, GaAs, and Ge nanowire (NW) n- and pMOSFETs with LG=13 nm (ITRS node of year 2018 [1-3]) based on atomistic quantum transport simulation [4] and including strain effects [5]. Uniaxial [6] tensile/compressive strain mostly increases nMOS/pMOS drive current and vice versa, but results may be different for low power (LP) operation because strain may also affect the tunneling leakage current. We also discuss the threshold voltage (Vth) sensitivity to strain, which may have an impact on the device variation. Finally, we compare current (I), capacitance (C), and energy (CV2) vs. delay (CV/I) trade-off (for gate or interconnect loading) across different n-channel (Si, InAs, GaAs, Ge) and p-channel (Si, Ge) materials considering extrinsic parasitic components (RSD, Cfringe) for different supply voltages (VDD's). We project that Ge CMOS (using <;110> NWs [7]) with source/drain (S/D) doping density (Nsd) optimized [8] depending on the operating condition (high performance (HP) or LP) may deliver the best drive current and CV2 vs. CV/I while it would also benefit from the homogeneous material integration. For low capacitance (low power consumption), III-V-Ge hybrid CMOS is most advantageous.\",\"PeriodicalId\":336637,\"journal\":{\"name\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2015.7409824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

随着MOSFET缩放的继续[1],新的n沟道和p沟道材料正在被积极探索,以提供比Si更好的性能目标。在本文中,我们基于原子量子输运模拟[4]并包括应变效应[5],给出了LG=13 nm(2018年ITRS节点[1-3])的Si、InAs、GaAs和Ge纳米线(NW) n-和pmosfet的CMOS性能基准测试结果。单轴[6]拉伸/压缩应变主要增加nMOS/pMOS驱动电流,反之亦然,但在低功率(LP)工作时,结果可能不同,因为应变也会影响隧道泄漏电流。我们还讨论了阈值电压(Vth)对应变的灵敏度,这可能会对器件的变化产生影响。最后,我们比较了电流(I)、电容(C)和能量(CV2)与延迟(CV/I)的权衡(对于栅极或互连负载),跨越不同的n沟道(Si、InAs、GaAs、Ge)和p沟道(Si、Ge)材料,考虑了不同电源电压(VDD)下的外部寄生成分(RSD、Cfringe)。我们预计,根据工作条件(高性能(HP)或LP)优化源/漏极(S/D)掺杂密度(Nsd)[8]的Ge CMOS(使用NWs[7])可能提供最佳的驱动电流和CV2与CV/I,同时它也将受益于均匀材料集成。对于低电容(低功耗),III-V-Ge混合CMOS是最有利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMOS performance benchmarking of Si, InAs, GaAs, and Ge nanowire n- and pMOSFETs with Lg=13 nm based on atomistic quantum transport simulation including strain effects
As MOSFET scaling continues [1], new n- and p-channel materials are being actively explored to deliver performance targets better than Si. In this paper, we present CMOS performance benchmarking results for Si, InAs, GaAs, and Ge nanowire (NW) n- and pMOSFETs with LG=13 nm (ITRS node of year 2018 [1-3]) based on atomistic quantum transport simulation [4] and including strain effects [5]. Uniaxial [6] tensile/compressive strain mostly increases nMOS/pMOS drive current and vice versa, but results may be different for low power (LP) operation because strain may also affect the tunneling leakage current. We also discuss the threshold voltage (Vth) sensitivity to strain, which may have an impact on the device variation. Finally, we compare current (I), capacitance (C), and energy (CV2) vs. delay (CV/I) trade-off (for gate or interconnect loading) across different n-channel (Si, InAs, GaAs, Ge) and p-channel (Si, Ge) materials considering extrinsic parasitic components (RSD, Cfringe) for different supply voltages (VDD's). We project that Ge CMOS (using <;110> NWs [7]) with source/drain (S/D) doping density (Nsd) optimized [8] depending on the operating condition (high performance (HP) or LP) may deliver the best drive current and CV2 vs. CV/I while it would also benefit from the homogeneous material integration. For low capacitance (low power consumption), III-V-Ge hybrid CMOS is most advantageous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信