基于Contourlet变换和非负矩阵分解的水印算法

M. Silja, K. Soman
{"title":"基于Contourlet变换和非负矩阵分解的水印算法","authors":"M. Silja, K. Soman","doi":"10.1109/ARTCom.2009.198","DOIUrl":null,"url":null,"abstract":"This paper present a robust digital image watermarking algorithm based on NMF and SVD in Contourlet transform. Firstly, the orgianal image is transformed into directional subband coefficients using Discrete Contourlet Transform(CT). Then apply NMF and SVD to factorize the directional subband coefficients. After that, embed grayscale watermark image into the SVD coefficients. The experiments based on this scheme shows that this method is very robust and it gives very good Peak Signal to Noise Ratio(PSNR).","PeriodicalId":256610,"journal":{"name":"2009 International Conference on Advances in Recent Technologies in Communication and Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Watermarking Algorithm Based on Contourlet Transform and Nonnegative Matrix Factorization\",\"authors\":\"M. Silja, K. Soman\",\"doi\":\"10.1109/ARTCom.2009.198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper present a robust digital image watermarking algorithm based on NMF and SVD in Contourlet transform. Firstly, the orgianal image is transformed into directional subband coefficients using Discrete Contourlet Transform(CT). Then apply NMF and SVD to factorize the directional subband coefficients. After that, embed grayscale watermark image into the SVD coefficients. The experiments based on this scheme shows that this method is very robust and it gives very good Peak Signal to Noise Ratio(PSNR).\",\"PeriodicalId\":256610,\"journal\":{\"name\":\"2009 International Conference on Advances in Recent Technologies in Communication and Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Advances in Recent Technologies in Communication and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARTCom.2009.198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Advances in Recent Technologies in Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARTCom.2009.198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于Contourlet变换中NMF和SVD的鲁棒数字图像水印算法。首先,利用离散轮廓波变换(CT)将有机图像变换为方向子带系数;然后应用NMF和奇异值分解对方向子带系数进行分解。然后,将灰度水印图像嵌入到SVD系数中。基于该方案的实验表明,该方法具有很好的鲁棒性,并能得到很好的峰值信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Watermarking Algorithm Based on Contourlet Transform and Nonnegative Matrix Factorization
This paper present a robust digital image watermarking algorithm based on NMF and SVD in Contourlet transform. Firstly, the orgianal image is transformed into directional subband coefficients using Discrete Contourlet Transform(CT). Then apply NMF and SVD to factorize the directional subband coefficients. After that, embed grayscale watermark image into the SVD coefficients. The experiments based on this scheme shows that this method is very robust and it gives very good Peak Signal to Noise Ratio(PSNR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信